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Ni°-nanoparticles of 0–8 nm were prepared in situ by impregnation of Ni(CH3COO)2 into the nanopores of
modifiedmontmorillonite (Mt) followed by polyol reduction. TheMt was activated with HCl under controlled
condition for generating desired pore sizes. The porous materials were characterized by XRD, TEM, SEM,
UV–visible spectroscopy, FTIR and XPS analysis. N2 adsorption data revealed specific surface areas (BET) in
the range of 296–548 m2/g, specific pore volumes of 0.4–0.6 cm3/g and pore diameters of 0–6.8 nm.
XRD pattern of Ni°-nanoparticles revealed the formation of face centered cubic (fcc) lattice. These supported
Nio-nanoparticles show efficient catalytic activity in transfer hydrogenation of acetophenone to 1-
phenylethanol with about 98% conversion, having nearly 100% selectivity.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Metal nanoparticles have attracted great attention in recent time
for their unique size dependent properties and applications in the
fields of catalysis, optoelectronics, magnetic devices, sensors, drug
delivery etc. (Campelo et al., 2009; Rao et al., 2000). Recently, much
attention has been paid on synthesizing metal nanoparticles with
controlled morphology (Puntes et al., 2001; Sun et al., 2000). Nickel
nanoparticles are widely used as catalyst (Mahata et al., 2009; Sapkal
et al., 2009), soft magnetic materials (Qin et al., 1999), chemically
protective coating (Chen et al., 2006), electrodes (Tu et al., 2006) and
low temperature super plastic materials (Mcfadden et al., 1999). The
stabilizers for synthesizing nanoparticles play an important role in
controlling nano size, shape as well as morphology and the most
commonly used stabilizers are surfactants (Chen and Hsieh, 2002),
polymers (Sharma et al., 2009a), organic ligands (Tamura and
Fujihara, 2003), alkylammonium salts (Aiken and Finke, 1999) etc.
Among porous materials, silica beads (Kim et al., 2002), zeolites
(Campelo et al., 2008), resins (Pande et al., 2008), activated carbon
(Mahata et al., 2008), metal oxides (Kantam et al., 2008), and clay
minerals (Ahmed and Dutta, 2003a; Kiraly et al., 1996; Sharma et al.,
2009b) are utilized for the stabilization of precious metal nanopar-
ticles. Attempts were made to stabilize metal nanoparticles into the
interlamellar space of clay minerals of the smectite group like
montmorillonite (Mt), hectorite, saponite, etc. (Ahmed and Dutta,

2003a, 2003b; Kiraly et al., 1996; Malla et al., 1991). Metal
nanoparticles supported on micro- and mesoporous materials are
expected to behave very differently from the unsupported one. Acid
activated Mt exhibits high surface area and contained micro- and
mesopores which were advantageously utilized for stabilizing metal
nanoparticles (Borah et al., 2010; Komadel and Madejova, 2006;
Sharma et al., 2009b).

The reduction of carbonyl compounds to the corresponding
alcohols is an important organic transformation in the industrial
synthesis of dyes, pharmaceuticals, agrochemicals and biologically
active compounds (Larock, 1989). Among different routes, transfer
hydrogenation is advantageously applied for the reduction for several
reasons: (a) the hydrogen donor (isopropanol) is cheap, safe, highly
selective and eco-friendly, (b) transfer hydrogenation reaction does
not require any elaborate experimental set up or high pressure
reactor. A wide variety of homogenous metal complexes have been
reported for transfer hydrogenation reaction (Backvall, 2002; Deb
et al., 2009; Samec et al., 2006), however, there are few reports
(Mohapatra et al., 2002; Upadhya et al., 1997) of heterogeneous
catalysts with several advantages over homogeneous systems in
respect of easy recovery, recycling, enhanced stability and minimiza-
tion of undesired toxic waste. Alonso et al. (2008a, 2008b) have
recently employed nickel nanoparticles for transfer hydrogenation of
carbonyl compound to corresponding alcohol by using isopropanol as
hydrogen donors. However, such a heterogeneous process need to be
improved because of the use of high amount of nickel (10–20 mol%)
and the catalyst are not sufficiently stabilized in solution. Moreover,
due to stringent and growing environmental regulations, chemical
industry needs the development of ecofriendly processes. In view of
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the above, we report the in situ generation of Ni°-nanoparticles into
micro- and mesopores of environmentally benign modified Mt and
their catalytic performance in transfer hydrogenation reactions.

2. Experimental

2.1. Materials and methods

Bentonite (procured from Gujarat, India) contains silica sand, iron
oxide etc. as impurities and was purified by dispersion followed by
sedimentation technique (Gillott, 1968) to collect the b2 μm fraction.
Air dried samples were characterized by XRD and the basal spacing
(d001) value was found to be 12.5 Å. Specific surface area as
determined by N2 adsorption was 101 m2/g. The oxide compositions
of the Mt as determined by wet chemical and flame photometric
methodswere SiO2: 49.42%; Al2O3: 20.02%; Fe2O3: 7.49%;MgO: 2.82%;
CaO: 0.69%; LOI: 17.51%; Na2O: 1.05%; K2O: 0.62% and TiO2: 0.38%.

Mt was converted to the homoionic Na+-exchanged form by
stirring in 2 M NaCl solution for about 78 h, washed and dialyzed
against distilled water until the conductivity of the water approached
that of distilled water. To determine the cation exchange capacity,
0.5 g Mt was treated during 24 h with 10 ml of standard alcoholic
CaCl2 solution (0.05 M). The dispersion was filtered and washed
repeatedly with alcohol. The washed filtrates were collected in a
250 ml volumetric flask and the volume was made up to the mark
with distilled water. The amount of Ca2+ was determined by titrating
by a standard EDTA solution. The difference between the concentra-
tion of Ca2+ before and after exchange corresponds to the CEC (meq/
g) of the clay mineral.

The reagents were procured from Acros Organic, Belgium, and
used as received without further purification.

FTIR studies were conducted by using a Perkin-Elmer system 2000
FT-IR spectrophotometer. UV–visible absorption spectra were
obtained at room temperature by the UV–visible spectrophotometer
model Shimadzu 1601 PC, using aqueous dispersion. Powder X-ray
diffractions were acquired on a Rigaku, Ultima IV X-ray diffractometer
from 2–80° 2θ using CuKα source (λ=1.54 Å). Specific surface area
(BET), specific pore volume and average pore diameter were
measured by using Autosorb-1 (Quantachrome, USA). Prior to
adsorption at 77 K, the samples were degassed at 250 °C for 3 h.
Pore size distributions were derived from desorption isotherms at P/
Po value of N0.35 and using Barrett–Joyner–Halenda (BJH) method.
Scanning ElectronMicroscopy (SEM) images and energy dispersive X-
ray spectroscopy (EDX) patterns were obtained by Leo 1430 vp
operated at 3 and 10 KV on gold coated sample. Trasmission Electron
Microscopy (TEM) imageswere recorded by a JEOL JEM-2011 electron
microscope on isopropanol dispersed samples using a carbon coated
grid. X-ray photoelectron spectroscopy (XPS) experiments were
performed with a Kratos ESCA model Axis 165 spectrophotometer
having a position sensitive detector and hemispherical energy
analyzer in an ion pumped chamber. The amount of Ni content was
determined by Atomic Absorption Spectrophotometer (AAS) (Model:
A Analyst, -700).

2.2. Preparation of support

Mt (5 g) was taken into a 250 ml three necked round bottom flask
and 100 ml of 4 M hydrochloric acid was added to it. The resulting
dispersion was refluxed for 1 and 2 h. After cooling, the supernatant
liquid was discarded and the Mt was repeatedly washed with
deionized water until free from Cl− ion (AgNO3 test). The clay was
recovered, dried in an air oven at 50±5 °C over night to obtain the
solid product. These modified Mt were designated as Acid-Mt1 and
Acid-Mt2 corresponding to activation time of 1 and 2 h.

2.3. Preparation of Ni°-nanoparticles

0.5 g of each Acid-Mt1 and Acid-Mt2 were taken separately into
100 ml beakers and 10 ml (0.041 M) aqueous solution of Ni
(CH3COO)2 was added slowly to each sample under vigorous stirring
condition. The stirring was continued for another 6 h followed by
evaporation to dryness in a rotary evaporator. The dry clay-Ni
(CH3COO)2 composite was dispersed in 50 ml ethylene glycol in a
double necked round bottom flasks and was refluxed at 196 °C for 6 h
in nitrogen environment under stirring condition. The products were
recovered, washed with methanol until free from ethylene glycol and
then dried under nitrogen environment at about 40 °C for 12 h. The
samples thus prepared were designated as Ni°-1 and Ni°-2 corre-
sponding to Acid-Mt1 and Acid-Mt2 supports respectively.

2.4. Catalytic transfer hydrogenation of ketones

In a typical reaction, 0.23 ml (2 mmol) of acetophenone, 20 ml of
isopropanol, 25 mg (0.02 mmol) of the catalyst (Ni°-I or Ni°-II) and
about 15 mg of NaOH were taken into a two necked round bottom
flask of 50 ml capacity and allowed to reflux at 349 K for 2 and 4 h
under nitrogen atmosphere. The insoluble catalyst was separated by
simple filtration and the product was analyzed by gas chromatogra-
phy (Chemito 8510) using BP-20 Wide bore capillary column,
30 m×0.53 mm id×1.0 μm film thickness and hydrogen as carrier
gas.

3. Results and discussion

3.1. Characterization of support

3.1.1. X-ray diffraction studies
The XRD patterns of Mt before and after acid activation treatment

were shown in Fig. 1. The significant structural modification of Mt was
reflected by their relative intensity and location of basal spacing
(d001). The unactivated Mt exhibited an intense peak at 7.06° 2θ,
corresponding to a basal spacing (d001) of 12.5 Å. On the other hand,
Acid-Mt1 showed a decrease in the intensity of this peak and no basal
spacing (d001) was observed for Acid-Mt2 which indicated non-
organization of layers in the C direction. A low intense broad peak in
the range of 20–30° 2θ suggested the formation of amorphous silica
(Wang et al., 2006).

3.1.2. Specific surface area and pore size distribution
The acid activated Mt showed micro- (b2 nm) and mesopores

(2–50 nm) with the pore diameters in the range of 0–6 nm, a high
specific surface area up to 548 m2/g and specific pore volume of
0.60 cm3/g (Table 1). Acid activation leads to modification of layered

Unactivated Mt

Acid-Mt2

Acid-Mt1

Fig. 1. Powder XRD pattern of different Mt before and after acid activation.
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Mt structure by leaching out aluminum from their tetrahedral and
octahedral sites (Bhorodwaj and Dutta, 2010).

The adsorption–desorption isotherms (Fig. 2) of Acid-Mt1 and
Acid-Mt2were of type-IV isothermwith a H3 hysteresis loop at P/Po of
~0.4–0.8, indicating mesoporous solids (Gregg and Sing, 1982). The
plot of differential volumes against pore diameters (Fig. 3) indicated
relatively narrow pore size distribution with an average pore
diameter of 4.14 and 6.01 nm for Acid-Mt1 and Acid-Mt2 respectively.
These modified clay mineral with high specific surface area and
controlled pores in the nano range may be advantageously utilized for
in situ generation of Ni°-nanoparticles.

3.1.3. FTIR study
The FTIR study of acid activated Mt was helpful in estimating the

degree of dissolution of layered structure. The unactivated Mt
exhibited intense absorption band at ~1034 cm−1 for Si–O stretching
vibrations of tetrahedral layer and bands at 522 and 460 cm−1 are due
to Si–O–Al and Si–O–Si bending vibrations respectively (Fig. 4). With
increase in acid activation time, the band at ~1034 cm−1 shifted to
~1083 cm−1, indicating the changes to the bonding environment in
tetrahedral layer and appeared a pronounced band near 800 cm−1,
characteristic of amorphous silica (Komadel and Madejova, 2006;
Wallis et al., 2007). The unactivated Mt also showed absorption bands
at 3633 and 1645 cm−1 due to stretching and bending vibrations of
OH groups of Al–OH. The bands at 917, 875 and 792 cm−1 were
related to AlAl–OH, AlFe–OH and AlMg–OH vibrations respectively
(Komadel and Madejova, 2006; Wallis et al., 2007). The gradual
decrease in intensity of these bands with increasing acid activation
time indicated the removal of Al, Fe andMg ions from the clay mineral
matrix.

3.1.4. SEM-EDX study
SEM-EDX studies of Mt before and after acid activation were

shown in Fig. 5. The Acid-Mt2 (Fig. 5c) showed the formation of pores
on the surface while those were absent on the unactivated Mt

(Fig. 5a). Furthermore, EDX spectra (Fig. 5b and d) revealed that upon
acid activation the Al content on the clay mineral surface decreased
and Si content increased.

3.1.5. Cation exchange capacity (CEC)
The CEC of the unactivated Mt (Table 1) i.e. 1.26 meq/g of clay

decreases to 0.41 and 0.20 meq/g of clay upon acid activation for 1 and
2 h respectively. This decrease in CEC values is due to the destruction
of layered structure of the Mt as the acid activation time increases
(Bhorodwaj and Dutta, 2010) and thus substantiates the finding of
XRD study.

3.2. Characterization of supported Ni°-nanoparticles

A preliminary study conducted on the formation of Ni°-nanopar-
ticles by UV–visible spectroscopy which showed that the visible
absorption band (Fig. 6) observed in the range 630–780 nm due to
Ni2+-Mt. (before reduction) disappeared for Ni°-1 and Ni°-2
composites (after reduction) and thus may indicate the formation of
Ni°-nanoparticles (Dhakshinamoorthy and Pitchumani, 2008).

The TEM images (Fig. 7) and corresponding particles size histo-
grams (Fig. 8) of Ni°-1 and Ni°-2 revealed the formation of different
sizes of Ni°-nanoparticles depending upon the micro- and mesopores
ofMt generatedduring acid activation for different time periods. Itwas
evident that the average particle size distribution of Ni°-nanoparticles
corresponds to the samples Ni°-1 and Ni°-2 were 1–5 and 4–8 nm
respectively. The micrographs clearly indicated that the particles have
a spherical morphology and are well dispersed on the support. From

Fig. 2. N2 adsorption/desorption isotherms of different acid activated Mt.

Fig. 3. BJH pore size distribution curves of acid activated Mt before and after Ni°-
nanoparticles deposition.

Fig. 4. FTIR spectra of different Mt before and after acid activation.

Table 1
Surface properties of Mt before and after Ni°-nanoparticles loading, cation exchange
capacities (CEC) and amount of Ni° loading.

Samples Specific
surface
area
(m2/g)

Average
pore
diameter
(nm)

Specific
pore
volume
(cm3/g)

CEC
(meq./g clay)

Ni
(±0.5 wt.%)

Unactivated Mt 101.0 9.16 0.2323 1.26 –

Acid-Mt1 548.0 4.14 0.5970 0.41 –

Acid-Mt2 412.0 6.01 0.6042 0.20 –

Ni°-1 315.0 5.20 0.4127 – 4.85
Ni°-2 296.0 6.80 0.5460 – 4.85
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TEM study, it was also observed that, some of the Ni°-nanoparticles
were found to be larger than the pore size of the supportwhichmay be
due to the presence of Ni°-nanoparticles on the outer surface of the
support rather than inside the pores. SEM-EDX analysis also
substantiated the formation of Ni°-nanoparticles on the well-tuned
pores of the acid activatedMt (Fig. 9a) with spherical morphology and
even distribution throughout the support. Furthermore, EDX analysis
(Fig. 9b) confirmed the presence of nickel as the only element in the
pores of the support.

The powder XRD of a typical sample Ni°-2 showed (Fig. 10) three
sharp peaks of 2θ values at 44.5, 51.8 and 76.4° which were assigned
to the (111), (200) and (222) indices of face centered cubic (fcc) of
metallic Ni (Sharma et al., 2009b). The average crystallite size of Ni°-II
was calculated for (111) plane and found to be 15 nm. In order to
ascertain the oxidation state, the samples were characterized by XPS
analysis (Fig. 11) wherein, Ni2p3/2 photoelectron peak at 852.8 eV
with typical doublet separated by 17.2 eV was observed which are in
good agreement with the metallic Ni (Hoffer et al., 2003; Wang et al.,
2003). However, the other peaks appearing at the higher binding
energy may be due to the presence of oxidized Ni (Fig. 11). The

amounts of Ni content in the catalysts were determined by AAS
analysis and found to be 4.85 wt.% (Table 1).

It is interesting to mention here that after supporting Ni°-nanopar-
ticles on acid activated Mt, the specific surface area and specific pore
volume of the clay mineral decrease, while pore diameters were

(b)

(d)(c) 

(a) 

Fig. 5. SEM image of the surface of (a) the unactivated Mt (b) the Acid-Mt2; and EDX analysis of (c) the unactivated Mt and (d) the Acid-Mt2.

Fig. 6. UV–visible spectra of Ni2+-Mt., Ni°-1 and Ni°-2.

 5 nm 

(a)

(b)

10 nm 

Fig. 7. Representative TEM images of (a) Ni°-1 and (b) Ni°-2.
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found to increase (Table 1). The decrease in specific surface area and
specific pore volume may be attributed to the physical occupancy by
Ni°-nanoparticles into the internal pores. However, increase of pore

diameter may be due to rupture of some smaller pores to generate
bigger ones during the formation of Ni°-nanoparticles into the pores.
Moreover, the introduction of Ni°-nanoparticles into the clay matrix
may cause complexities in porosity measurement with nitrogen
adsorption, because the electrostatic forces between an adsorbate
(i.e. nitrogen) andmetallic surfacemay affect themeasured values to
some extent. From the distribution curve it showed that both the
samples Ni°-1 and Ni°-2 have a narrow pore size distribution in the
range of 0–8 nm (Fig. 3).

3.3. Catalytic transfer hydrogenation of acetophenone

The catalytic activities of Ni°-1 and Ni°-2, containing about
4.85 wt.% Ni, were carried out in transfer hydrogenation reaction of
acetophenone to 1-phenylethanol in the presence of isopropanol and
NaOH (Scheme 1). The catalysts Ni°-1 and Ni°-2 showed conversions
about 17 and 21% respectively after 1 h reaction time, which enhanced
to 92 and 98%, with nearly 100% selectivity on increasing the reaction
time to 4 h (Fig. 12).

The high conversion and selectivity shown by the catalysts may be
due to high specific surface area and highly dispersed Ni°-nanaparticle
into the porous matrix of the support. The higher catalytic activity of
Ni°-2 over Ni°-1 may be attributed to the effect of wider specific pore
volume of the catalyst matrix. In order to obtain more detail
information on the conversion of acetophenone to 1-phenylethanol
catalyzed by the highly active Ni°-2 catalyst, a thorough investigation
was carried out and the results were shown in Fig. 13. It appears that

Fig. 8. Particle size histograms of (a) Ni°-1 and (b) Ni°-2.

 20 nm

(a)

(b)

Fig. 9. (a) SEM image of Ni°-2 and (b) EDX spot analysis on pores.

Fig. 10. Powder XRD pattern of Ni°-2.

Fig. 11. XPS spectrum of Ni°-2.
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the catalytic conversion proceeds very fast up to a period of 4 h and
there after slows down andmaintained a constant conversion of 99.3%
after 5 h, with nearly 100% selectivity. The catalysts showed very low
activity when the reactionwas performed in the absence of the base at
349 K; while addition of the base exhibited a beneficial effect with a
significant increase in conversion by manifold. A negligible amount of
product is formed when the reaction was carried out in presence of
base without catalyst. It may be indicated that the acid activated Mt
support alone did not show any catalytic activity. The mechanism of
the catalytic reaction may follow the well established mono- or
dihydride route (Alonso et al., 2008a, 2008b; Ukisu and Miyadera,
1997). It is interesting to mention here that the Raney nickel under
the present catalytic reaction condition produced the hydrogenolysis
product (Andrews and Pillai, 1978) instead of 1-phenyethanol from
acetophenone. Since, the catalyst is susceptible to be oxidized by air,
their preparation and subsequent catalytic reactions should be carried
out in the absence of oxygen. The effect of amount of catalyst on
acetophenone conversion catalyzed by the highly active Ni°-2 is
shown in Fig. 14. The conversion increased with the increase in the
amount of catalyst used for the reactions and also observed that
higher the time of reaction, higher is the conversion. The conversion of
31 and 69% shown by 0.005 mmol of catalyst for 2 and 4 h reaction
time respectively, enhanced correspondingly to 52 and 98% upon
increasing the amount of catalyst to 0.02 mmol. This observation may
be attributed to the presence of more active sites for the reactants. The
selectivity remained nearly 100% in all cases.

3.3.1. Reversibility of the hydrogenation of acetophenone
During the hydrogenation of acetophenone, a decrease in the

amount of acetophenone (Table 2) was observed with the progress of
the reaction time and after 5 h, a constant amount i.e. 0.7% of
acetophenone was observed up to 6 h. On the other hand, if the
reaction was carried out in a reverse direction i.e. by starting with
1-phenylethanol under similar reaction condition, it appeared that
0.4% of acetophenone forms immediately and remained almost
constant for several hours. Thus, the reaction of acetophenone to
1-phenylethanol is reversible. Similar observation was also reported
earlier by Masson et al., 1997.

3.3.2. Recyclability of the catalyst
In order to regenerate a catalyst like Ni°-2 after 4 h reaction, the

catalyst was separated by filtration, washed with deionized water,
dried in a dessicator and reused for transfer hydrogenation with fresh
reaction mixture up to the third run. The results (Table 3) showed a
decrease in conversion upon subsequent reuse i.e. the conversion of
98% in the first run decreases to about 87% in the second run and to
64% in the third run, however, the selectivity remained almost
unchanged i.e. N99%. This decrease in catalytic activity may be due to
leaching of Ni°-nanoparticles from the clay support during the
catalytic reaction as substantiated by AAS study.

Fig. 12. Effects of different catalysts on transfer hydrogenation of acetophenone.
Reaction conditions: acetophenone (2 mmol), NaOH (15 mg) and catalyst (0.02 mmol)
in isopropanol (20 ml); Conversion (%) were determined by gas chromatography,
selectivity was 100%.

O
Catalyst, i-PrOH

349 K, NaOH, Under N2

OH

Acetophenone 1-phenylethanol

Scheme 1..

Fig. 14. Effects of catalyst amount on transfer hydrogenation of acetophenone using
Ni°-2. Reaction conditions: acetophenone (2 mmol) and NaOH (15 mg) in isopropanol
(20 ml); Conversion (%) were determined by gas chromatography, selectivity was
100%.

Table 3
Transfer hydrogenation of acetophenone using recovered catalyst Ni°-2.

Run Conversion (%) Selectivity (%)

1 98 100
2 87 N99
3 64 N99

Table 2
Amount of acetophenone left out as a function of reaction time catalyzed by Ni°-2.

Time (h) 2 4 5 5.5 6
Acetophenone (%) 48 2 1.2 0.7 0.7

Fig. 13. Effects of reaction time on transfer hydrogenation of acetophenone using Ni°-2
catalyst. Reaction conditions: acetophenone (2 mmol), NaOH (15 mg) and catalyst
(0.02 mmol) in isopropanol (20 ml); Conversion (%) were determined by gas
chromatography, selectivity was 100%.
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4. Conclusion

Ni°-nanoparticles of 0–8 nm generated in situ into the micro- and
mesopores of Mt show efficient catalysis in transfer hydrogenation of
acetophenone to 1-phenylethanol with conversion of about 98%,
having nearly 100% selectivity within a reaction period of 4 h. The
high conversion and selectivity of the product may be attributed to
the high dispersion and small sizes of the Ni°-nanoparticles. The
catalysts can be regenerated and reused for several runs.
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