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a b s t r a c t

The preparation of ring-A fused steroidal dehydropiperazine at the 3,4-position is herein

described. The novel steroidal dehydropiperazines were prepared from the annulation reac-

tion of ethylenediamine with 3-keto-4-en steroids in a one-pot reaction under microwave

irradiation. The key step involves base catalysed aerial oxidation of the C-6 methylene group

followed by cyclocondensation of ethylenediamine via Michael addition reaction.

© 2008 Elsevier Inc. All rights reserved.
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∼150 mesh) and monitored on Merck aluminium thin layer
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. Introduction

-ring hetero steroids have attracted great attention because
f their pharmaceutical properties [1]. Continued efforts are
eing made to annelate steroidal moiety with pyrazole, isox-
zole, pyridine, pyrrolo or pyrimidine rings as many of these
eterosteroids possess potent biological activities [2–14]. The
yrazine fused bissteroid cephalostatin has shown power-
ul cell growth inhibition against P388 lymphocytic leukemia
15,16]. On the contrary, the piperazine constitutes an impor-
ant class of heterocycles owing to wide spectrum of biological
ctivities [17,18]. Christiansen and Clinton have described the
reparation of biologically active steroidal piperazine fused
o 2,3-position of steroidal nucleus [19]. These were prepared
n two steps – (a) condensation of androst-2,3-dione with
thylenediamine to steroidal pyrazine, and (b) hydrogenation

f steroidal pyrazine to steroidal piperazine. However, there is
lack of attention for the development of synthetic strategy

or A-ring fused piperazines at 3,4-position of steroidal moiety.

∗ Corresponding author. Tel.: +91 3762370012; fax: +91 3762370011.
E-mail address: rc boruah@yahoo.co.in (R.C. Boruah).

039-128X/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
oi:10.1016/j.steroids.2008.01.005
In view of the therapeutic importance of A-ring heterosteroids
as well as piperazines, we were interested to prepare piper-
azine fused steroids from readily available A-ring conjugated
ketosteroids. Herein, we wish to report a microwave promoted
convenient preparation of steroidal dehydropiperazine from
the one-pot reaction of 3-keto-4-en steroids with ethylenedi-
amine.

2. Experimental

2.1. General Remarks

All reactions were performed as per standard procedure using
Aldrich aluminium oxide active basic (Brockmann grade I,
chromatography (TLC, UV254 nm) plates. Column chromatog-
raphy was carried out on silica gel (60–120 mesh, Merck
chemicals). Melting points were determined in open capil-

mailto:rc_boruah@yahoo.co.in
dx.doi.org/10.1016/j.steroids.2008.01.005
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lary tubes on Buchi B-540 apparatus and are uncorrected. IR
spectra were recorded on a Perkin Elmer FT-IR spectrometer
using KBr pellets or on a thin film using chloroform. All the
1H and 13C NMR spectra were recorded on Brucker Avance
DPX 300 MHz spectrometer using tetramethylsilane (TMS) as
internal standard. Chemical shift values were given as ı ppm
values. ESI mass spectra were recorded on a Brucker Daltonic
Data Analysis 2.0 spectrometer. Elemental analysis was per-
formed on Perkin Elmer Series II CSNS/O Model 2400 machine
calibrated against standard acetanilide.

2.2. Organic synthesis

Steroid (1.04 mmol) and ethylenediamine (5.2 mmol) were inti-
mately mixed with basic alumina (1.0 g) in a mortar and
irradiated in an open reaction vessel of a Synthwave 402
Prolabo focused microwave reactor for 5–8 min after setting
reaction temperature at 120 ◦C and power at 60% (maximum
output 300 W). On completion of reaction (vide TLC), the reac-
tion mixture was treated with water (50 ml), extracted with
dichloromethane (3 × 30 ml). The organic portion was washed
with water, dried over anhydrous sodium sulfate and the sol-
vent removed to obtain a crude product. Silica gel column
chromatography separation using EtOAc/hexane (4:6) as elu-
ant over silica gel afforded the purified product.

2.2.1. 4′-Dehydro-cholest-4-eno[3,4-e]piperazin-6-one 2a
Brown crystals, yield 90%; mp: 128–130 ◦C; IR cm−1: 3490,
2952, 1630, 1582, 1544, 1467, 1280; 1H NMR (CDCl3, 300 MHz)
ı 11.07 (bs, 1H, NH), 3.75 (m, 2H, N CH2 ), 3.22 (m, 2H,

NH CH2 ), 1.10 (s, 3H, 19 CH3), 0.71 (s, 3H, 18 CH3). 13C
NMR (CDCl3, 75 MHz,): ı 200.7, 163.5, 141.7, 113.5, 57.3, 56.3,
50.0, 47.0, 44.4, 42.7, 39.9, 36.7, 36.5, 36.1, 35.0, 32.4, 28.6,
28.4 (2C), 24.3, 24.2, 23.2, 23.0 (2C), 22.4, 21.7, 21.6, 19.1,
12.3. ESI mass m/z = 439 [M+ + 1]. Anal calcd. for C29H46N2O:
C, 79.40; H, 10.57; N, 6.38. Found: C, 79.66; H, 10.31; N,
6.20.

2.2.2. 17ˇ-Hydroxy-4′-dehydro-androst-4-
eno[3,4-e]piperazin-6-one 2b
Gum, yield 88%; IR cm−1: 3376, 2940, 1671, 1582, 1541, 1454,
1277; 1H NMR (CDCl3, 300 MHz) ı 11.10 (bs, 1H, NH), 3.61 (m,
2H, N CH2 ), 3.18 (m, 2H, NH CH2 ), 1.12 (s, 3H, 19 CH3),
0.75 (s, 3H, 18 CH3). 13C NMR (CDCl3, 75 MHz,): ı 200.7, 163.4,
142.3, 113.4, 82.0, 51.3, 51.0, 50.5, 47.8, 44.3, 43.6, 39.5, 37.2,
36.4, 35.5, 32.9, 31.0, 23.9, 22.9, 21.8, 12.0. ESI mass m/z = 343
[M+ + 1].

2.2.3. 17ˇ-Acetoxy-4′-dehydro-androst-4-
eno[3,4-e]piperazin-6-one 2c
Gum, yield 85%; IR cm−1: 3375, 2925, 1732, 1663, 1583, 1541,
1465, 12775; 1H NMR (CDCl3, 300 MHz) ı 11.05 (bs, 1H, NH),
4,45 (t, 1H, J = 8.2 Hz, 17 CH ), 3.60 (m, 2H, N CH2 ), 3.21 (m,
2H, NH CH2 ), 1.12 (s, 3H, 19 CH3), 1.05 (s, 3H, 17 OCOCH3),

0.76 (s, 3H, 18 CH3). 13C NMR (CDCl3, 75 MHz,): ı 170.8, 162.6,
143.5, 114.1, 87.3, 82.5, 51.9, 51.2, 50.9, 48.0, 44.5, 43.8, 39.2, 38.2,
37.0, 36.1, 33.5, 31.7, 24.4, 22.6, 22.5, 12.4. ESI mass m/z = 385
[M+ + 1].
0 8 ) 539–542

2.2.4. 4′-Dehydro-androst-4-eno[3,4-e]piperazin-
6,17-dione 2d
Gum, yield 86%; IR cm−1: 3385, 2944, 1737,1672, 1536, 1452,
1227; 1H NMR (CDCl3, 300 MHz) ı 11.17 (bs, 1H, NH), 3.52 (m,
2H, N CH2 ), 3.30 (m, 2H, NH CH2 ), 1.30 (s, 3H, 19 CH3),
0.92 (s, 3H, 18 CH3). 13C NMR (CDCl3, 75 MHz,): ı 221.1, 200.0,
171.1, 142.0, 124.5, 54.1, 51.2, 47.9 (2C), 39.0, 36.1, 36.0, 35.5, 34.2,
32.9, 31.6, 31.1, 22.1, 20.7, 17.7, 14.1. ESI mass m/z = 341 [M+ + 1].

2.2.5. 4′-Dehydro-pregnan-4-eno[3,4-e]piperazin-6-one 2e
Gum, yield 85%; IR cm−1: 3383 2941, 1702, 1583, 1539, 1450,
1275; 1H NMR (CDCl3, 300 MHz) ı 1.18 (bs, 1H, NH), 3.78 (m, 2H,

N CH2 ), 3.26 (m, 2H, NH CH2 ), 2.20 (s, 3H, 21 CH3), 1.10
(s, 3H, 19 CH3), 0.71 (s, 3H, 18 CH3). 13C NMR (CDCl3, 75 MHz,):
ı 209.5, 204.2, 167.1, 146.2, 117.1, 68.1, 65.2, 61.7, 58.3, 55.1, 54.2,
48.7, 43.4, 41.1, 39.5, 36.3 (2C), 28.9, 27.5, 26.8, 25.9, 19.0, 18.1.
MS (ESI): ESI mass m/z = 369 [M+ + 1].

2.2.6. 4′-Dehydro-24-ethyl-cholest-4,22-
dieno[3,4-e]piperazin-6-one 2f
Brown crystals, yield 94%; mp: 207–210 ◦C; IR cm−1: 3416, 2956,
1675, 1583, 1542, 1458, 1279 cm−1; 1H NMR (300 MHz, CDCl3)
ı 11.09 (bs, 1H, NH), 5.10 (m, 2H, CH CH ), 3.74, (m, 2H,

N CH2 ), 3.20 (m, 2H, NH CH2 ), 1.09 (s, 3H, 19 CH3), 0.75
(s, 3H, 18 CH3). 13C NMR (CDCl3, 75 MHz,): ı 200.1, 167.6, 146.1,
142.9, 134.2, 117.7, 61.8, 60.53, 56.02, 55.3, 49.2, 47.1, 42.0, 41.2,
39.2, 36.7, 35.1, 32.74, 27.9, 27.2, 26.9, 25.9, 23.8, 22.6, 22.0, 21.8,
21.3, 19.7, 18.6, 17.1, 16.9. Mass m/z = 465 [M+ + 1]. Anal calcd.
for C31H48N2O: C, 80.12; H, 10.41; N, 6.03. Found: C, 80.34; H,
10.22; N, 5.86.

3. Results and discussion

A number of approaches have been reported for the prepa-
ration of piperazine moiety, among them the most commonly
described route utilizes the facile reaction of 1,2-diamine with
1,2-diketo compounds [20].

We carried out the reaction of 3-keto-4-en steroids using
basic alumina as reaction medium under microwave irradia-
tion [11] and isolating the product over silica gel by column
chromatography. Under these conditions, 4-cholesten-3-one
(1a) reacted with ethylenediamine to afford 2a in 90% yield
(Fig. 1). The product was characterized by spectral and ana-
lytical analysis. The 1H NMR showed a downfield signal at
ı 11.07 due to NH proton and absence of the C-4 olefinic
proton in the region ı 5.00–5.50. The 13C NMR spectrum of
2a exhibited characteristic signal for C-6 carbonyl carbon at ı

200.7, C-3 imine carbon at ı 163.5 and C-4 and C-5 olefinic car-
bons at ı 141.7 and 113.5, respectively. The ESI mass spectrum
showed molecular ion peak at m/z 439 (M+ + 1). We examined
the feasibility of this synthetic route using other steroidal
A-ring conjugated ketones such as testosterone (1b), testos-
terone acetate (1c), 4-androsten-3,17-dione (1d), progesterone
(1e) and 24-ethyl-4,22-cholestadiene-one (1f) under identical
conditions. In all cases, the reaction of 1a–f with ethylene

diamine afforded A-ring fused steroidal dehydropiperazines
2b–f in high yields varying from 85% to 92%. When the reac-
tions of 1a–f were carried in solution using toluene under
microwave, the products 2a–f were obtained in 70–82% yield.
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Fig. 1 – Synthesis of steroidal dehydropiperazines from corresponding steroidal conjugated carbonyl compounds.

Fig. 2 – Proposed mechanism for the formation of dehydropiperazine derivative.
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imilarly, 3-keto-4-en steroids 1a–f reacted with ethylenedi-
mine in refluxing toluene for 4–6 h to give A-ring steroidal
ehydropiperazines 2a–f in good yields (65–74%). Interestingly,
ehydropiperazine adducts 2a–f did not undergo aromatiza-
ion reaction, as no pyrazine adducts could be isolated from
he reaction mixtures.

A proposed mechanism for the formation of dehydropiper-
zine derivative 2a from 1a is shown in Fig. 2. Under the
nfluence of basic ethylenediamine, the conjugated ketone ini-
ially facilitated arial oxidation [21,22] of the C-6 allylic protons
ia an enolate intermediate A to afford diketo intermediate
. The condensation of ethylenediamine with B followed by
ichael addition and autoxidation led to 2a via intermedi-

te C. As a support to our presumption for the initial arial
xidation reaction, we treated 3-keto-cholest-4-en 1a with
-butylamine instead of ethylenediamine, when it afforded 4-

holesten-3,6-dione (B) in high yield. The oxidation reaction
f 1a to B did not proceed under nitrogen atmosphere. Also,
reatment of 4-cholesten-3,6-dione (B) [23] with ethylenedi-
mine led to facile synthesis of 2a in excellent yield. Further,
the failure of 2a to undergo aromatization under the reac-
tion condition could be due to conjugation of the exocyclic
enamino group with the carbonyl group of ring-B.

In conclusion, we have developed an efficient one-pot
synthesis of A-ring steroidal dehydropiperazines from the
reaction of 3-keto-4-en steroids with ethylenediamine in an
environmentally benign condition. We have demonstrated
that the reaction requires aerobic condition for the facile base
catalysed conversion of mono keto steroid to diketo steroid.
The methodology reported herein represents a new prepara-
tion of A-ring fused steroidal dehydropiperazines using easily
available 3-keto-4-en steroids.
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