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Abstract: Novel annelated a-carbolines have been synthesized
from oxindole using three components in a one-pot procedure in-
volving an intramolecular [3+2]-dipolar cycloaddition reaction of
azides to nitriles.
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The a-carboline {pyrido[2,3-b]indole} system and its an-
nelated (Figure 1) comprise compounds possessing di-
verse biological activity such as antitumour,1 anti-HIV,2

antiviral,3 anxiolytic, anti-inflammatory, CNS stimulat-
ing,4 and antileukemia activity.5 Possibly the activities
that have attracted most attention to the a-carbolines are
CDK-1, CDK-5, and GSK-3 kinase inhibition.6 Further-
more, certain a-carbolines have found clinical application
for treatment of hypertension.7

Figure 1

Unsurprisingly, considering the importance of a-carbo-
lines, much effort has been made towards the synthesis of
these compounds.8 Recently, we have reported an effi-
cient method for the synthesis of a-carbolines by explor-
ing the ‘tertiary amino effect’ reaction strategy.9

Five-membered nitrogen heterocycles play an important
role in biological systems.10 Among these,1,2,3,4-tetra-
zoles have received considerable attention due to their

wide range of biological activity and as important synthet-
ic precursors.11 These nitrogen-rich ring systems are also
used in propellants and explosives.12

Cycloaddition reactions13 allow the direct construction of
new rings with a variety of substituents by simple addition
of two or more reagents. Within this class, inter- and in-
tramolecular dipolar cycloaddition reactions have found
extensive use as efficient regio- and stereoselective meth-
odologies.14 With the current emphasis towards green
chemistry, chemical processes with high atom economy
have received growing attention from the scientific com-
munity. The [3+2]-dipolar cycloaddition of azides to ni-
triles being a typical case, leading to the formation of
1,2,3,4-tetrazoles.15

One-pot multicomponent reactions (MCR), by virtue of
their convergence have attracted considerable attention.16

In the past decade there have been developments in three-
and four-component reactions and great efforts have been
made to develop new MCR.17

As part of our continued interest in the area of synthesis of
diverse heterocyclic compounds of biological impor-
tance,18 we report herein an efficient method for the syn-
thesis of novel annelated a-carbolines by a three-
component, one-pot reaction involving intramolecular
[3+2]-dipolar cycloaddition reaction of azides to nitriles
(Scheme 1).

Oxoindole (1), the starting material in our reaction strate-
gy, on treatment with the Vilsmeier reagent, afforded the
key b-halo aldehyde 2.9 Boc-protected indole 3a was pre-
pared in high yield by employing standard Boc-protection
protocol using di-tert-butyl dicarbonate (Boc2O).9 In the
three-component reaction19 equimolar amounts of 3a, eth-
yl cyanoacetate 4a, and sodium azide 5 were treated at
50 °C in the presence of a catalytic amount of triethyl-
amine for three hours using DMF as solvent. The solid ob-
tained on pouring the reaction mixture into water and after
workup afforded the compound 6a in good yield. The
structure of the compound was ascertained from spectro-
scopic and elemental analysis. The 1H NMR spectrum
showed the absence of the aldehyde proton and the pres-
ence of the ethyl group of the ester. The IR spectrum
showed the absence of the cyanide group, which evi-
denced its involvement in the cycloaddition reaction. The
mass spectrum revealed a strong peak at 382.4 [M+ + Na].
With suitable conditions established for the three-compo-
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nent reaction, a series of compounds 6a–i was synthe-
sized, utilizing various 2-chloro-3-formyl indoles 3a–c20

with alkyl nitriles 4a–c and sodium azide 5. The structures
of the compounds were determined from their spectro-
scopic data and elemental analyses (Table 1). Although
there was a possibility of the formation of the compound
7 from compound 3c via intramolecular 1,3-dipolar cy-
cloaddition of the azide to the isolated double bond, we
have not observed the formation of such a cycloadduct.

Scheme 1 Reaction conditions: (i) DMF, POCl3; (ii) Boc2O; (iii)
MeI, NaH; (iv) allyl bromide, PTC, NaOH.

Initially, we studied the reaction without protecting the ni-
trogen atom of the indole moiety but nucleophilic substi-
tution by azide did not occur, even under forcing
conditions. However, when the nitrogen atom was pro-
tected, nucleophilic substitution and the subsequent cy-
clization steps occurred very smoothly to give the desired
compounds in excellent yields. Cyanoacetamides are
found to be least reactive.

A plausible mechanism for the reaction is outlined in
Scheme 1. Initial Knoevenagel condensation of 3 and 4 in
the presence of triethylamine gives intermediate [A]
which then reacts with sodium azide to give [B]. The
azide then undergoes an intramolecular [3+2]-dipolar cy-
cloaddition to the pendant cyano group to afford the a-car-
boline 6.

The path of the reaction and hence the proposed mecha-
nism was established by performing the reaction stepwise
(Scheme 2). First, we treated 1-Boc-2-chloro-3-formyl in-
dole (3a) with ethyl cyanoacetate (4a) using piperidine as

catalyst at room temperature to give the Knoevenagel con-
densation product [A] in quantitative yield.21 In order to
introduce the azido group at the 2-position of the indole
molecules, the compound [A] was treated with NaN3 (5)
in DMF at 50 °C with stirring.22 However, the intermedi-
ate [B] could not be isolated but spontaneously underwent
intramolecular cycloaddition to the cyanide group to pro-
duce the product 6a. The compound was comparable in all
respects to the compound obtained from the three-compo-
nent reaction.

Scheme 2

The N-Boc deprotection could be achieved with standard
method.23 However, we report herein the N-Boc-protected
compounds because of their very good solubility, which
helps in their characterization (N-deprotected compounds
have very poor solubility).

In conclusion, we report the synthesis of a novel class of
complex a-carboline derivatives from a simple oxindole
by exploring the intramolecular [3+2]-dipolar cycloaddi-
tion of azides to nitriles using a three-component, one-pot
protocol under mild conditions. The pathway for forma-
tion of the products in the three-component process was
established by performing the reaction stepwise. This very
simple protocol for the synthesis of tetracyclic angularly
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Product R1 R2 Temp 
(°C)
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(h)

Mp 
(°C)

Yield 
(%)

6a BOC CO2Et 60 3 222–223 71

6b Me CO2Et 60 3 229–230 70

6c CH2CH=CH2 CO2Et 60 3 189–190 67

6d Boc CN 50 2.5 175–176 66

6e Me CN 50 2.5 181–182 65

6f CH2CH=CH2 CN 50 2.5 173–174 62

6g Boc CONH2 60 3 210–211 55

6h Me CONH2 60 3 239–240 59

6i CH2CH=CH2 CONH2 60 3 207–208 57
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annelated a-carbolines from readily available starting ma-
terials is a valuable addition to the chemistry of a-carbo-
lines in particular and heterocyclic compounds as a whole.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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