
A
p

M
M

a

A
R
R
A
A

K
H
A
P
M
A

1

b
o
p
a
v
a
e
p
p
l
a
i
t
f
a
b
t
f
a
c

t

0
d

Steroids 74 (2009) 730–734

Contents lists available at ScienceDirect

Steroids

journa l homepage: www.e lsev ier .com/ locate /s tero ids

facile three-component solid phase synthesis of steroidal A-ring fused
yrimidines under microwave irradiation

adan G. Barthakur, Shyamalee Gogoi, Mandakini Dutta, Romesh C. Boruah ∗

edicinal Chemistry Division, North-East Institute of Science and Technology, Jorhat 785006, India

r t i c l e i n f o

rticle history:
eceived 19 July 2008
eceived in revised form 4 March 2009
ccepted 17 March 2009

a b s t r a c t

The preparation of ring-A fused pyrimidines at the steroidal 2,3-position is herein described. The
novel steroidal pyrimidines were prepared from the solid phase three-component reaction of 2-
hydroxymethylene-3-keto steroids, arylaldehydes and ammonium acetate under microwave irradiation.
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. Introduction

The pyrimidine heterocyclic core is an important subunit
ecause of its widespread abundance in the basic structure
f numerous natural products [1]. A number of synthetic
harmacophores based upon the pyrimidyl structure exhibit
ntibacterial, antimicrobial, anticancer, anti-HIV-1 and antirubella
irus activities [2–4]. On the other hand, A-ring heterosteroids
re pharmaceutically important compounds due to their inher-
nt biological properties [5,6]. A great deal of attention is being
aid to annelate steroidal moiety with pyrazole, pyridine, isoxazole,
yrrole rings using various synthetic strategies [7–13]. Neverthe-

ess, the effort made towards development of newer synthetic
pproaches for A-ring annelated steroidal pyrimidines is still lim-
ted. For example, Clinton and his co-workers have described
he preparation of biologically active steroidal[3,2-b]pyrimidines
rom condensation of 2-hydroxymethylene-3-ketosteroids with
cetamidine-hydrochloride [14]. Laitonjam et al. utilized 2-
is(methylthio) methylene-3-ketosteroid and guanidine nitrate for
he synthesis of A-ring fused steroidal pyrimidine [15]. Recently we
orwarded a microwave promoted facile synthesis of A- and D-ring

nnelated pyrimidines from steroidal �-formyl enamides and urea
atalysed by Lewis acids [16].

The multi-component reactions (MCR) attract enormous impor-
ance from the point of combinatorial chemistry and inherit

∗ Corresponding author. Tel.: +91 376 2370121x2355; fax: +91 376 2370011.
E-mail address: rc boruah@yahoo.co.in (R.C. Boruah).
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importance over two-component reactions in several aspects
such as the simplicity of a one-pot procedure, possible struc-
tural variations, complicated synthesis and a large number of
accessible compounds [17–19]. In view of the therapeutic impor-
tance of pyrimidines, we were interested to prepare pyrimidine
fused steroids from readily available 2-hydroxymethylene-3-
ketosteroids utilizing multi-component reaction [20]. Herein, we
wish to report a microwave promoted convenient preparation of
steroidal[3,2-b]pyrimidines from the three-component reaction
of 2-hydroxymethylene-3-ketosteroids, arylaldehydes and ammo-
nium acetate.

2. Experimental

2.1. General remarks

All reactions were performed as per standard procedure using
silica gel (60–120 mesh, Merck chemicals) and monitored on Merck
aluminium thin layer chromatography (TLC, UV254 nm) plates. Col-
umn chromatography was carried out on silica gel (60–120 mesh,
Merck chemicals). Melting points were determined in open cap-
illary tubes on Buchi B-540 apparatus and are uncorrected. IR
spectra were recorded on a Perkin Elmer FT-IR spectrometer using
KBr pellets or on a thin film using chloroform. All the 1H and

13C NMR spectra were recorded on Brucker Avance DPX 300 MHz
spectrometer using tetramethylsilane (TMS) as internal standard.
Chemical shift values were given as ı (ppm) values. ESI mass
spectra were recorded on a Brucker Daltonic Data Analysis 2.0
spectrometer. Elemental analysis was performed on Perkin Elmer

http://www.sciencedirect.com/science/journal/0039128X
http://www.elsevier.com/locate/steroids
mailto:rc_boruah@yahoo.co.in
dx.doi.org/10.1016/j.steroids.2009.03.006
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eries II CSNS/O Model 2400 machine calibrated against standard
cetanilide.

.2. Organic synthesis

General procedure for the preparation of 2′-Aryl-steroidal[3,2-
]pyrimidine: 2-Hydroxymethylene-3-ketosteroid (1a, 1 mmol),
romatic aldehyde (2a, 2 mmol) and ammonium acetate (2 mmol)
ere intimately mixed with silica gel (60–120 mesh, 2.0 g) in a
ortar and the mixture was irradiated in an open reaction ves-

el of a Synthwave 402 Prolabo focused microwave reactor for
min after setting reaction temperature at 120 ◦C and power at
0% (maximum output 300 W). On completion of reaction (vide
LC), the reaction mixture was treated with water (50 ml), extracted
ith dichloromethane (3 × 30 ml). The organic portion was washed
ith water, dried over anhydrous sodium sulfate and the solvent

emoved to obtain a crude product. Silica gel column chromatog-
aphy separation using EtOAc/hexane (1:9) as eluant over silica gel
fforded the purified product 3a.

.2.1. 2′-Phenyl-5˛-cholest[3,2-d]pyrimidine (3a)
White crystals, yield (398 mg 80%); mp: 169–170 ◦C; IR cm−1:

930, 1587, 1575, 1547, 1467, 1454, 1424, 770; 1H NMR (CDCl3,
00 MHz) ı 8.42 (s, 1H, aromatic proton of pyrimidine), 8.37 (d,
H, J = 6.20 Hz), 7.52–7.14 (m, 4H, aromatic protons), 2.88–0.86 (m,
8H, alkane protons), 0.86 (s, 3H, 19-CH3), 0.75 (s, 3H, 18-CH3).
3C NMR (CDCl3, 75 MHz): ı 165.0, 161.7, 157.4, 137.7, 129.8, 128.2
2C), 127.6 (2C), 126.9, 56.0, 55.9, 53.2, 42.1, 41.1, 39.4, 39.2, 36.0,
5.5, 35.2, 34.7, 32.3, 28.3, 27.9, 27.7 (2C), 23.9, 23.6, 22.6, 22.3
2C), 21.0, 18.4, 11.7, 11.4. ESI mass m/z = 498 [M+]. Anal calcd for
35H50N2: C, 84.28; H, 10.10; N, 5.62. Found: C, 84.48; H, 10.34; N,
.43.

.2.2. 2′-(p-Tolyl)-5˛-cholest[3,2-d]pyrimidine (3b)
White crystals, yield (435 mg 85%); mp: 174–175 ◦C; IR cm−1:

931, 1582, 1561, 1541, 1466, 1424, 760; 1H NMR (CDCl3, 300 MHz)
8.40 (s, 1H, aromatic proton of pyrimidine), 8.26 (d, 1H, J = 7.94 Hz),
.48 (d, 1H, J = 7.95 Hz), 7.26 (d, 1H, J = 7.94 Hz), 7.02 (d, 1H,
= 7.95 Hz), 2.40 (s, 3H, tolyl methyl), 2.86–0.88 (m, 38H, alkane
rotons), 0.86 (s, 3H, 19-CH3), 0.76 (s, 3H, 18-CH3). 13C NMR (CDCl3,
5 MHz): ı 164.9, 161.8, 157.3, 139.9, 135.0, 129.0, 128.5, 127.5, 126.6,
25.6, 56.0, 53.2, 42.1, 41.1, 39.2, 35.9, 35.5, 35.2, 34.7, 31.2, 29.0, 27.9,
7.7 (2C), 23.9, 23.6, 22.6 (2C), 22.3 (2C), 21.2, 21.0, 18.4 (2C), 11.7,
1.4. ESI mass m/z = 512 [M+]. Anal calcd for C36H52N2: C, 84.32; H,
0.22; N, 5.46. Found: C, 84.53; H, 10.45; N, 5.64.

.2.3. 2′-(p-Chlorophenyl)-5˛-cholest[3,2-d]pyrimidine (3c)
White crystals, yield (416 mg 78%); mp: 155–56 ◦C; IR cm−1:

928, 1582, 1560, 1543, 1466, 1426, 786; 1H NMR (CDCl3, 300 MHz)
8.42 (s, 1H, aromatic proton of pyrimidine), 8.33 (d, 1H, J = 7.68),

.38–7.25 (m, 3H), 2.87–0.88 (m, 38H, alkane protons), 0.86 (s, 3H,
9-CH3), 0.77 (s, 3H, 18-CH3). 13C NMR (CDCl3, 75 MHz): ı 165.1,
61.7, 157.4, 135.8, 128.9 (2C), 128.4 (2C), 127.3, 125.6, 55.9 (2C),
3.2, 41.9, 41.1, 39.5, 39.3, 35.9, 35.5, 35.2, 34.8, 31.2, 27.9, 27.7,
3.9, 23.6, 22.5 (2C), 22.3 (2C), 21.0, 21.0, 18.4, 11.7, 11.4. ESI mass
/z = 532 [M+]. Anal calcd for C35H49N2Cl: C, 78.84; H, 9.26; N, 5.25.

ound: C, 78.59; H, 9.41; N, 5.15.

.2.4. 2′-(p-Anisyl)-5˛-cholest[3,2-d]pyrimidine (3d)
White crystals, yield (465 mg 88%); mp: 162–64 ◦C; IR cm−1:

933, 1607, 1584, 1564, 1531, 1509, 1465, 1436, 1417, 1249, 801, 760;

H NMR (CDCl3, 300 MHz) ı 8.44 (s, 1H, aromatic proton of pyrimi-
ine), 7.63 (d, 1H, J = 8.85), 7.16 (d, 1H, J = 8.60), 6.79 (d, 1H, J = 8.66),
.74 (d, 1H, J = 8.92), 3.79 (s, 3H, –OMe), 2.90–0.88 (m, 38H, alkane
rotons), 0.86 (s, 3H, 19-CH3), 0.70 (s, 3H, 18-CH3). 13C NMR (CDCl3,
5 MHz): ı 165.1, 160.9, 158.1, 136.4, 131.7, 129.6 (2C), 129.1, 125.6,
ds 74 (2009) 730–734 731

113.3, 56.0, 55.1, 54.9, 42.2, 41.1, 39.2, 36.1, 35. 8, 35.5, 34.8, 31.6, 27.7
(2C), 23.9, 23.4, 22.6 (2C), 22.3 (2C), 20.9 (2C), 18.4, 13.3 (2C), 12.5,
11.4. ESI mass m/z = 528 [M+]. Anal calcd for C36H52N2O: C, 81.77;
H, 9.91; N, 5.29. Found: C, 81.59; H, 9.82; N, 5.14.

2.2.5. 2′-Phenyl-(24R)-24-ethyl-5˛-cholest[3,2-d]pyrimidine (3e)
Pyrimidine (3e) was prepared from 1b: White crystals, yield

(426 mg 81%); mp: 170–71 ◦C; IR cm−1: 2957, 1586, 1574, 1546,
1465, 1454, 1424, 759; 1H NMR (CDCl3, 300 MHz) ı 8.41 (s, 1H, aro-
matic proton of pyrimidine), 8.38 (d, 1H, J = 7.20 Hz), 7.57-7.35 (m,
4H, aromatic protons), 2.88-0.88 (m, 42H, alkane protons), 0.85 (s,
3H, 19-CH3), 0.74 (s, 3H, 18-CH3). 13C NMR (CDCl3, 75 MHz): ı 165.0,
161.7, 157.4, 137.7, 129.8, 128.2, 127.6 (2C), 126.9, 125.6, 56.0, 55.9,
53.2, 45.5, 42.1 (2C), 41.1, 39.4 (2C), 36.0, 35.9, 34.7, 33.6, 31.5, 28.8,
28.0 (2C), 25.7, 23.90 23.9, 22.7 (2C), 19.6, 18.8, 18.5, 11.7, 11.4. ESI
mass m/z = 526 [M+]. Anal calcd for C37H54N2: C, 84.35; H, 10.33; N,
5.32. Found: C, 84.52; H, 10.20; N, 5.18.

2.2.6. 2′-Phenyl-cholest[3,2-d]pyrimidin-4-ene (3f)
Pyrimidine (3f) was prepared from 1c: White crystals, yield

(392 mg 79%); mp: 122–124 ◦C; IR cm−1: 2934, 1586, 1572, 1548,
1492, 1454, 1425, 761; 1H NMR (CDCl3, 300 MHz) ı 8.35 (s, 1H, aro-
matic proton of pyrimidine), 8.17 (d, 1H, J = 6.80), 7.35–7.29 (m, 4H,
aromatic protons), 5.99 (bs, 1H, C4-H), 2.91–0.93 (m, 35H, alkane
protons), 0.85 (s, 3H, 19-CH3), 0.74 (s, 3H, 18-CH3). 13C NMR (CDCl3,
75 MHz): ı 162.3, 157.2, 153.9, 138.0, 128.1, 128.1, 127.97, 127.7, 127.6,
127.5, 126.7, 122.8, 58.0, 56.0, 66.7, 54.3, 42.1 (2C), 39.2 (2C), 38.3,
35.8, 35.5, 34.2, 29.4, 27.7 (2C), 23.6, 22.6 (2C), 22.3 (2C), 18.4, 18.1,
11.7. ESI mass m/z = 496 [M+]. Anal calcd for C35H48N2: C, 84.62; H,
9.74; N, 5.64. Found: C, 84.48; H, 9.90; N, 5.48.

2.2.7.
2′-Phenyl-(24R)-24-ethyl-cholest[3,2-d]pyrimidin-4,22-diene
(3g)

Pyrimidine (3g) was prepared from 1d: White crystals, yield
(417 mg 80%); mp: 202–204 ◦C; IR cm−1: 2957, 1586, 1572, 1547,
1492, 1455, 1424, 759; 1H NMR (CDCl3, 300 MHz) ı 8.43 (s, 1H,
aromatic proton of pyrimidine), 8.25 (d, 1H, J = 6.50 Hz), 7.50–7.37
(m, 4H, aromatic protons), 6.07 (bs, 1H, C4-H), 5.18–4.96 (m, 2H,
olefinic protons), 2.99–0.89 (m, 35H, alkane protons), 0.84 (s, 3H,
19-CH3), 0.76 (s, 3H, 18-CH3). 13C NMR (CDCl3, 75 MHz): ı 162.3,
157.2, 153.9, 143.1, 142.7, 138.0, 137.9, 128.1, 128.0, 128.0, 127.7,
127.5, 126.8, 122.8, 58.0, 55.7 (2C), 51.0, 45.4, 42.0 (2C), 41.5, 40.2,
38.3 (2C), 35.5, 34.1, 31.6 (2C), 25.2, 20.9 (2C), 18.7 (2C), 18.1, 12.0,
11.9. ESI mass m/z = 522 [M+]. Anal calcd for C37H50N2: C, 85.00; H,
9.64; N, 5.36. Found: C, 84.88; H, 9.48; N, 5.43.

2.2.8. 2-(p-Tolyl)-5,6-dihydro-benzo[h]quinazoline (3h)
Pyrimidine (3h) was prepared from 1e: Light yellow crystals,

yield (0.22 g, 80%); mp: 101–103 ◦C; Rf = 0.4 (EtOAc:hexane = 5:95);
IR (CHCl3): � 2932, 1585, 1565, 1538, 1432, 1419, 1390, 765 cm−1.
1H NMR (300 MHz, CDCl3): ı 8.59 (s, 1H, aromatic proton of pyrim-
idine), 8.57–8.43 (m, 2H, aromatic protons), 7.45–7.39 (m, 2H,
aromatic protons), 7.33–7.25 (m, 4H), 3.04–2.92 (m, 4H, alkane pro-
tons), 2.43 (s, 3H, –CH3). 13C NMR (75 MHz, CDCl3): ı 162.9, 158.8,
155.5, 140.1, 139.0, 135.1, 132.5, 130.7, 129.0 (2C), 127.8 (2C), 127.7,
127.0, 125.6, 125.4, 27.3, 24.1, 21.2. MS (ESI): m/z = 273 [M+ + 1]. Anal.
calcd for C19H16N2: C, 83.79; H, 5.92; N, 10.29. Found: C, 83.96; H,
5.88; N, 10.30.

2.2.9. 2-(p-Tolyl)-5,6,7,8-tetrahydro-quinazoline (3i)

Pyrimidine (3i) was prepared from 1f: Light yellow crystals,

yield (0.17 g, 76%); mp: 67–69 ◦C; Rf = 0.5 (EtOAc:hexane = 5:95);
IR (CHCl3): � 2923, 1582, 1561, 1531, 1417, 772 cm−1. 1H NMR
(300 MHz, CDCl3): ı 8.43 (s, 1H, aromatic proton of pyrimidine),
8.40 (d, 1H, J = 7.95 Hz), 7.37–7.16 (m, 3H, aromatic protons), 2.72
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Table 1
Synthesis of steroidal and non-steroidal pyrimidines (3a–j) from 2-hydroxymethylene-ketones (1a–g) under microwave irradiationa.

nding
.

(
4
1
(
1

aThe reactions were conducted under microwave for 6–9 min.
bAll 2-hydroxymethyleneketones 1a–g were prepared from correspo
cIsolated yields based on starting 2-hydroxymethyleneketones 1a–g
m, 2H, alkane), 2.60 (m, 2H, alkane), 2.39 (s, 3H, –CH3), 1.79 (m,
H, alkane). 13C NMR (75 MHz, CDCl3): ı 161.7, 159.2, 157.4, 139.9,
37.2, 130.0, 129.7, 129.0, 127.7, 126.3, 27.4, 26.1, 21.9, 21.3, 21.1. MS
ESI): m/z = 224 [M+]. Anal. calcd for C15H16N2: C, 80.32; H, 7.19; N,
2.49. Found: C, 80.09; H, 7.12; N, 12.56.
3-oxosteroids and non-steroidal ketones in 88–96% yields.
2.2.10. 5-Ethyl-2,4-diphenyl-pyrimidine (3j)
Pyrimidine (3j) was prepared from 1g: Yellow gum, yield (0.2 g,

75%); Rf = 0.6 (EtOAc:hexane = 5:95); IR (CHCl3): � 2927, 1585, 1563,
1532, 1493, 1423, 1025, 753 cm−1. 1H NMR (300 MHz, CDCl3): ı
8.72 (s, 1H, aromatic proton of pyrimidine), 8.50–8.46 (m, 2H, aro-
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Fig. 1. Synthesis of steroidal pyrimidines 3

atic protons), 7.66–7.63 (m, 2H, aromatic protons), 7.52–7.45 (m,
H, aromatic protons), 2.77 (q, 2H, J = 7.53 Hz, –CH2), 1.20 (t, 3H,
= 7.53 Hz, –CH3). 13C NMR (75 MHz, CDCl3): ı 165.1, 162.2, 158.2,
38.5, 137.8, 131.6, 130.4, 129.2, 128.9 (2C), 128.5 (2C), 128.4 (2C),
28.1 (2C), 23.1, 15.0. MS (ESI): m/z = 260 [M+].

. Results and discussion

The 2-hydroxymethylene-3-ketosteroids (1a–d) were readily
repared from 5�-cholestan-3-one, (24R)-24-ethyl-5�-cholestan-
-one, cholest-4-en-3-one and (24R)-24-ethyl-cholest-4,22-dien-
-one in excellent yields by following a procedure of Weisenborn
t al. [21]. The bicyclic, monocyclic and acyclic 2-hydroxymethylene
erivatives (1e–g) were similarly prepared from 1-tetralone, cyclo-
exanone and butyrophenone respectively (Table 1).

We carried out the three-component reaction of 2-
ydroxymethylene-3-ketosteroids, using silica gel (60–120 mesh)
s solid phase reaction medium under microwave irradiation and
solating the product over silica gel by column chromatography.
nder these conditions, 2-hydroxymethylene-cholestan-3-one

1a) reacted with benzaldehyde (2a) and ammonium acetate
o afford 2′-Phenyl-5�-cholest[3,2-d]pyrimidine (3a) in 80%
ield (Fig. 1). The product was characterized by spectral and
nalytical analysis. The 1H NMR showed a singlet signal at ı
.42 due to aromatic proton of pyrimidine ring and absence of
he 2-hydroxymethylene olefinic proton at ı 8.75. The 13C NMR
pectrum of 3a exhibited characteristic aromatic carbon signals at
165.0, 161.7, 157.4, 137.7, 129.8, 128.2, 127.6 and 126.9. The ESI

ass spectrum showed molecular ion peak at m/z 498 (M+).
We examined the feasibility of this synthetic route by carry-

ng three-component reaction of 1a with other aromatic aldehydes
uch as p-tolualdehyde (2b), p-chlorobenzaldehyde (2c) and p-
nisaldehyde (2d) in presence of ammonium acetate under

Fig. 2. Proposed mechanism for the form
2-hydroxymethylene-3-ketocholestan 1a.

identical conditions and obtained 2′-(p-tolyl)-5�-cholest[3,2-d]
pyrimidine (3b), 2′-(p-chlorophenyl)-5�-cholest[3,2-d]pyrimidine
(3c) and 2′-(p-anisyl)-5�-cholest[3,2-d]pyrimidine (3d) respec-
tively in 78–88% yields. Similarly, 2′-Phenyl-(24R)-24-ethyl-5�-
cholest[3,2-d]pyrimidine (3e), 2′-Phenyl-cholest[3,2-d]pyrimidin-
4-ene (3f) and 2′-Phenyl-(24R)-24-ethyl-cholest[3,2-d]pyrimidin-
4,22-diene (3g) were prepared from 2-hydroxymethylene-(24R)-
24-ethyl-cholestan-3-one (1b), 2-hydroxymethylene-cholest-4-
en-3-one (1c) and 2-hydroxymethylene-(24R)-24-ethyl-cholestan-
4,22-dien-3-one (1d) respectively in 79–81% yields.

To extend the scope of the reaction, we employed the three-
component reaction strategy to bicyclic, monocyclic and acyclic
2-hydroxymethylene ketones (1e–g) with 2a–b to afford 2-(p-
tolyl)-5,6-dihydro-benzo[h]quinazoline (3h), 2-(p-tolyl)-5,6,7,8-
tetrahydro-quinazoline (3i), 5-ethyl-2,4-diphenyl-pyrimidine (3j)
in 75–78% yields.

A mechanism is proposed for the formation of pyrimidine
derivatives 3a from three-component reaction of 1a, benzalde-
hyde (2a) and ammonium acetate as shown in Fig. 2. Under the
influence microwave, the 2-hydroxymethylene-3-ketosteroid (1a)
reacted with ammonia, released from decomposition of ammo-
nium acetate, to facilitate amination to afford �-aminoketoimine
intermediate A [14]. Condensation of intermediate A with 2a led
to diimine intermediate B which participated in cyclisation reac-
tion by nucleophilic attack of the ketoimine to aldeimine affording
dihydropyrimidine intermediate C with subsequent auto oxidation
to afford 3a.

In conclusion, we have developed an efficient microwave
promoted three-component reaction of 2-hydroxymethylene-3-

ketosteroids, aryldehydes and ammonium acetate for the facile
synthesis of A-ring fused steroidal pyrimidines. The reaction
strategy has been successfully extended to non-steroidal 2-
hydroxymethyleneketone derivatives. The methodology reported
herein represents a new preparation of A-ring fused steroidal

ation of pyrimidine derivative 3a.
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s well as non-steroidal pyrimidines using easily available 2-
ydroxymethyleneketones as starting materials. The methodology
lso provides a facile strategy for A-ring steroidal pyrimidines with
n aryl substitution at 2′-position.
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