
FISEVIER

Contents lists available at ScienceDirect

Steroids

A facile three-component solid phase synthesis of steroidal A-ring fused pyrimidines under microwave irradiation

Madan G. Barthakur, Shyamalee Gogoi, Mandakini Dutta, Romesh C. Boruah*

Medicinal Chemistry Division, North-East Institute of Science and Technology, Jorhat 785006, India

ARTICLE INFO

Article history: Received 19 July 2008 Received in revised form 4 March 2009 Accepted 17 March 2009 Available online 28 March 2009

Keywords: Heterosteroids Arylaldehyde Pyrimidine Microwave Ammonium acetate

ABSTRACT

The preparation of ring-A fused pyrimidines at the steroidal 2,3-position is herein described. The novel steroidal pyrimidines were prepared from the solid phase three-component reaction of 2-hydroxymethylene-3-keto steroids, arylaldehydes and ammonium acetate under microwave irradiation.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The pyrimidine heterocyclic core is an important subunit because of its widespread abundance in the basic structure of numerous natural products [1]. A number of synthetic pharmacophores based upon the pyrimidyl structure exhibit antibacterial, antimicrobial, anticancer, anti-HIV-1 and antirubella virus activities [2-4]. On the other hand, A-ring heterosteroids are pharmaceutically important compounds due to their inherent biological properties [5,6]. A great deal of attention is being paid to annelate steroidal moiety with pyrazole, pyridine, isoxazole, pyrrole rings using various synthetic strategies [7-13]. Nevertheless, the effort made towards development of newer synthetic approaches for A-ring annelated steroidal pyrimidines is still limited. For example, Clinton and his co-workers have described the preparation of biologically active steroidal[3,2-b]pyrimidines from condensation of 2-hydroxymethylene-3-ketosteroids with acetamidine-hydrochloride [14]. Laitoniam et al. utilized 2bis(methylthio) methylene-3-ketosteroid and guanidine nitrate for the synthesis of A-ring fused steroidal pyrimidine [15]. Recently we forwarded a microwave promoted facile synthesis of A- and D-ring annelated pyrimidines from steroidal β -formyl enamides and urea catalysed by Lewis acids [16].

The multi-component reactions (MCR) attract enormous importance from the point of combinatorial chemistry and inherit

importance over two-component reactions in several aspects such as the simplicity of a one-pot procedure, possible structural variations, complicated synthesis and a large number of accessible compounds [17–19]. In view of the therapeutic importance of pyrimidines, we were interested to prepare pyrimidine fused steroids from readily available 2-hydroxymethylene-3-ketosteroids utilizing multi-component reaction [20]. Herein, we wish to report a microwave promoted convenient preparation of steroidal[3,2-b]pyrimidines from the three-component reaction of 2-hydroxymethylene-3-ketosteroids, arylaldehydes and ammonium acetate.

2. Experimental

2.1. General remarks

All reactions were performed as per standard procedure using silica gel (60–120 mesh, Merck chemicals) and monitored on Merck aluminium thin layer chromatography (TLC, UV $_{254\,\mathrm{nm}}$) plates. Column chromatography was carried out on silica gel (60–120 mesh, Merck chemicals). Melting points were determined in open capillary tubes on Buchi B-540 apparatus and are uncorrected. IR spectra were recorded on a Perkin Elmer FT-IR spectrometer using KBr pellets or on a thin film using chloroform. All the $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra were recorded on Brucker Avance DPX 300 MHz spectrometer using tetramethylsilane (TMS) as internal standard. Chemical shift values were given as δ (ppm) values. ESI mass spectra were recorded on a Brucker Daltonic Data Analysis 2.0 spectrometer. Elemental analysis was performed on Perkin Elmer

^{*} Corresponding author. Tel.: +91 376 2370121x2355; fax: +91 376 2370011. E-mail address: rc.boruah@yahoo.co.in (R.C. Boruah).

Series II CSNS/O Model 2400 machine calibrated against standard acetanilide.

2.2. Organic synthesis

General procedure for the preparation of 2'-Aryl-steroidal[3,2-d]pyrimidine: 2-Hydroxymethylene-3-ketosteroid (**1a**, 1 mmol), aromatic aldehyde (**2a**, 2 mmol) and ammonium acetate (2 mmol) were intimately mixed with silica gel (60–120 mesh, 2.0 g) in a mortar and the mixture was irradiated in an open reaction vessel of a Synthwave 402 Prolabo focused microwave reactor for 6 min after setting reaction temperature at 120 °C and power at 60% (maximum output 300 W). On completion of reaction (vide TLC), the reaction mixture was treated with water (50 ml), extracted with dichloromethane (3×30 ml). The organic portion was washed with water, dried over anhydrous sodium sulfate and the solvent removed to obtain a crude product. Silica gel column chromatography separation using EtOAc/hexane (1:9) as eluant over silica gel afforded the purified product **3a**.

2.2.1. 2'-Phenyl-5 α -cholest[3,2-d]pyrimidine (**3a**)

White crystals, yield (398 mg 80%); mp: $169-170\,^{\circ}$ C; IR cm⁻¹: 2930, 1587, 1575, 1547, 1467, 1454, 1424, 770; 1 H NMR (CDCl₃, 300 MHz) δ 8.42 (s, 1H, aromatic proton of pyrimidine), 8.37 (d, 1H, J = 6.20 Hz), 7.52–7.14 (m, 4H, aromatic protons), 2.88–0.86 (m, 38H, alkane protons), 0.86 (s, 3H, 19-CH₃), 0.75 (s, 3H, 18-CH₃). 13 C NMR (CDCl₃, 75 MHz): δ 165.0, 161.7, 157.4, 137.7, 129.8, 128.2 (2C), 127.6 (2C), 126.9, 56.0, 55.9, 53.2, 42.1, 41.1, 39.4, 39.2, 36.0, 35.5, 35.2, 34.7, 32.3, 28.3, 27.9, 27.7 (2C), 23.9, 23.6, 22.6, 22.3 (2C), 21.0, 18.4, 11.7, 11.4. ESI mass m/z = 498 [M $^{+}$]. Anal calcd for C₃₅H₅₀N₂: C, 84.28; H, 10.10; N, 5.62. Found: C, 84.48; H, 10.34; N, 5.43.

2.2.2. 2'-(p-Tolyl)- 5α -cholest[3,2-d]pyrimidine (**3b**)

White crystals, yield (435 mg 85%); mp: 174–175 °C; IR cm⁻¹: 2931, 1582, 1561, 1541, 1466, 1424, 760; $^1\mathrm{H}$ NMR (CDCl₃, 300 MHz) δ 8.40 (s, 1H, aromatic proton of pyrimidine), 8.26 (d, 1H, J = 7.94 Hz), 7.48 (d, 1H, J = 7.95 Hz), 7.26 (d, 1H, J = 7.94 Hz), 7.02 (d, 1H, J = 7.95 Hz), 2.40 (s, 3H, tolyl methyl), 2.86–0.88 (m, 38H, alkane protons), 0.86 (s, 3H, 19-CH₃), 0.76 (s, 3H, 18-CH₃), $^{13}\mathrm{C}$ NMR (CDCl₃, 75 MHz): δ 164.9, 161.8, 157.3, 139.9, 135.0, 129.0, 128.5, 127.5, 126.6, 125.6, 56.0, 53.2, 42.1, 41.1, 39.2, 35.9, 35.5, 35.2, 34.7, 31.2, 29.0, 27.9, 27.7 (2C), 23.9, 23.6, 22.6 (2C), 22.3 (2C), 21.2, 21.0, 18.4 (2C), 11.7, 11.4. ESI mass m/z = 512 [M $^+$]. Anal calcd for $\mathrm{C}_{36}\mathrm{H}_{52}\mathrm{N}_{2}$: C, 84.32; H, 10.22; N, 5.46. Found: C, 84.53; H, 10.45; N, 5.64.

2.2.3. 2'-(p-Chlorophenyl)- 5α -cholest[3,2-d]pyrimidine (3c)

White crystals, yield (416 mg 78%); mp: $155-56 \,^{\circ}$ C; IR cm⁻¹: 2928, 1582, 1560, 1543, 1466, 1426, 786; 1 H NMR (CDCl₃, 300 MHz) δ 8.42 (s, 1H, aromatic proton of pyrimidine), 8.33 (d, 1H, J=7.68), 7.38–7.25 (m, 3H), 2.87–0.88 (m, 38H, alkane protons), 0.86 (s, 3H, 19-CH₃), 0.77 (s, 3H, 18-CH₃). 13 C NMR (CDCl₃, 75 MHz): δ 165.1, 161.7, 157.4, 135.8, 128.9 (2C), 128.4 (2C), 127.3, 125.6, 55.9 (2C), 53.2, 41.9, 41.1, 39.5, 39.3, 35.9, 35.5, 35.2, 34.8, 31.2, 27.9, 27.7, 23.9, 23.6, 22.5 (2C), 22.3 (2C), 21.0, 21.0, 18.4, 11.7, 11.4. ESI mass m/z = 532 [M⁺]. Anal calcd for C₃₅H₄₉N₂Cl: C, 78.84; H, 9.26; N, 5.25. Found: C, 78.59; H, 9.41; N, 5.15.

2.2.4. 2'-(p-Anisyl)- 5α -cholest[3,2-d]pyrimidine (3d)

White crystals, yield (465 mg 88%); mp: 162-64 °C; IR cm⁻¹: 2933, 1607, 1584, 1564, 1531, 1509, 1465, 1436, 1417, 1249, 801, 760; ¹H NMR (CDCl₃, 300 MHz) δ 8.44 (s, 1H, aromatic proton of pyrimidine), 7.63 (d, 1H, J=8.85), 7.16 (d, 1H, J=8.60), 6.79 (d, 1H, J=8.66), 6.74 (d, 1H, J=8.92), 3.79 (s, 3H, -OMe), 2.90–0.88 (m, 38H, alkane protons), 0.86 (s, 3H, 19-CH₃), 0.70 (s, 3H, 18-CH₃), ¹³C NMR (CDCl₃, 75 MHz): δ 165.1, 160.9, 158.1, 136.4, 131.7, 129.6 (2C), 129.1, 125.6,

113.3, 56.0, 55.1, 54.9, 42.2, 41.1, 39.2, 36.1, 35. 8, 35.5, 34.8, 31.6, 27.7 (2C), 23.9, 23.4, 22.6 (2C), 22.3 (2C), 20.9 (2C), 18.4, 13.3 (2C), 12.5, 11.4. ESI mass m/z = 528 [M⁺]. Anal calcd for C₃₆H₅₂N₂O: C, 81.77; H, 9.91; N, 5.29. Found: C, 81.59; H, 9.82; N, 5.14.

2.2.5. 2'-Phenyl-(24R)-24-ethyl- 5α -cholest[3,2-d]pyrimidine (**3e**)

Pyrimidine (**3e**) was prepared from **1b**: White crystals, yield (426 mg 81%); mp: 170–71 °C; IR cm $^{-1}$: 2957, 1586, 1574, 1546, 1465, 1454, 1424, 759; 1 H NMR (CDCl $_{3}$, 300 MHz) δ 8.41 (s, 1H, aromatic proton of pyrimidine), 8.38 (d, 1H, $_{J}$ =7.20 Hz), 7.57–7.35 (m, 4H, aromatic protons), 2.88–0.88 (m, 42H, alkane protons), 0.85 (s, 3H, 19–CH $_{3}$), 0.74 (s, 3H, 18–CH $_{3}$). 13 C NMR (CDCl $_{3}$, 75 MHz): δ 165.0, 161.7, 157.4, 137.7, 129.8, 128.2, 127.6 (2C), 126.9, 125.6, 56.0, 55.9, 53.2, 45.5, 42.1 (2C), 41.1, 39.4 (2C), 36.0, 35.9, 34.7, 33.6, 31.5, 28.8, 28.0 (2C), 25.7, 23.90 23.9, 22.7 (2C), 19.6, 18.8, 18.5, 11.7, 11.4. ESI mass m/z = 526 [M $^{+}$]. Anal calcd for C $_{37}$ H $_{54}$ N $_{2}$: C, 84.35; H, 10.33; N, 5.32. Found: C, 84.52; H, 10.20; N, 5.18.

2.2.6. 2'-Phenyl-cholest[3,2-d]pyrimidin-4-ene (3f)

Pyrimidine (**3f**) was prepared from **1c**: White crystals, yield (392 mg 79%); mp: 122-124 °C; IR cm⁻¹: 2934, 1586, 1572, 1548, 1492, 1454, 1425, 761; ¹H NMR (CDCl₃, 300 MHz) δ 8.35 (s, 1H, aromatic proton of pyrimidine), 8.17 (d, 1H, J= 6.80), 7.35–7.29 (m, 4H, aromatic protons), 5.99 (bs, 1H, C₄-H), 2.91–0.93 (m, 35H, alkane protons), 0.85 (s, 3H, 19-CH₃), 0.74 (s, 3H, 18-CH₃). ¹³C NMR (CDCl₃, 75 MHz): δ 162.3, 157.2, 153.9, 138.0, 128.1, 128.1, 127.97, 127.7, 127.6, 127.5, 126.7, 122.8, 58.0, 56.0, 66.7, 54.3, 42.1 (2C), 39.2 (2C), 38.3, 35.8, 35.5, 34.2, 29.4, 27.7 (2C), 23.6, 22.6 (2C), 22.3 (2C), 18.4, 18.1, 11.7. ESI mass m/z = 496 [M⁺]. Anal calcd for C₃₅H₄₈N₂: C, 84.62; H, 9.74; N, 5.64. Found: C, 84.48; H, 9.90; N, 5.48.

2.2.7.

2'-Phenyl-(24R)-24-ethyl-cholest[3,2-d]pyrimidin-4,22-diene (**3g**)

Pyrimidine (**3g**) was prepared from **1d**: White crystals, yield (417 mg 80%); mp: 202–204 °C; IR cm⁻¹: 2957, 1586, 1572, 1547, 1492, 1455, 1424, 759; ¹H NMR (CDCl₃, 300 MHz) δ 8.43 (s, 1H, aromatic proton of pyrimidine), 8.25 (d, 1H, J = 6.50 Hz), 7.50–7.37 (m, 4H, aromatic protons), 6.07 (bs, 1H, C₄-H), 5.18–4.96 (m, 2H, olefinic protons), 2.99–0.89 (m, 35H, alkane protons), 0.84 (s, 3H, 19-CH₃), 0.76 (s, 3H, 18-CH₃). ¹³C NMR (CDCl₃, 75 MHz): δ 162.3, 157.2, 153.9, 143.1, 142.7, 138.0, 137.9, 128.1, 128.0, 128.0, 127.7, 127.5, 126.8, 122.8, 58.0, 55.7 (2C), 51.0, 45.4, 42.0 (2C), 41.5, 40.2, 38.3 (2C), 35.5, 34.1, 31.6 (2C), 25.2, 20.9 (2C), 18.7 (2C), 18.1, 12.0, 11.9. ESI mass m/z = 522 [M⁺]. Anal calcd for C₃₇H₅₀N₂: C, 85.00; H, 9.64; N, 5.36. Found: C, 84.88; H, 9.48; N, 5.43.

2.2.8. 2-(p-Tolyl)-5,6-dihydro-benzo[h]quinazoline (**3h**)

Pyrimidine (**3h**) was prepared from **1e**: Light yellow crystals, yield (0.22 g, 80%); mp: 101–103 °C; R_f = 0.4 (EtOAc:hexane = 5:95); IR (CHCl₃): ν 2932, 1585, 1565, 1538, 1432, 1419, 1390, 765 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ 8.59 (s, 1H, aromatic proton of pyrimidine), 8.57–8.43 (m, 2H, aromatic protons), 7.45–7.39 (m, 2H, aromatic protons), 7.33–7.25 (m, 4H), 3.04–2.92 (m, 4H, alkane protons), 2.43 (s, 3H, –CH₃).

¹³C NMR (75 MHz, CDCl₃): δ 162.9, 158.8, 155.5, 140.1, 139.0, 135.1, 132.5, 130.7, 129.0 (2C), 127.8 (2C), 127.7, 127.0, 125.6, 125.4, 27.3, 24.1, 21.2. MS (ESI): m/z = 273 [M⁺ + 1]. Anal. calcd for C₁₉H₁₆N₂: C, 83.79; H, 5.92; N, 10.29. Found: C, 83.96; H, 5.88; N, 10.30.

2.2.9. 2-(p-Tolyl)-5,6,7,8-tetrahydro-quinazoline (**3i**)

Pyrimidine (**3i**) was prepared from **1f**: Light yellow crystals, yield (0.17 g, 76%); mp: 67–69 °C; $R_{\rm f}$ = 0.5 (EtOAc:hexane = 5:95); IR (CHCl₃): ν 2923, 1582, 1561, 1531, 1417, 772 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 8.43 (s, 1H, aromatic proton of pyrimidine), 8.40 (d, 1H, J = 7.95 Hz), 7.37–7.16 (m, 3H, aromatic protons), 2.72

 Table 1

 Synthesis of steroidal and non-steroidal pyrimidines (3a-j) from 2-hydroxymethylene-ketones (1a-g) under microwave irradiation^a.

Substrates ^b	Arylaldeh	nyde	Products	Yield° (%)
HO — 1a	Me Me C ₆ H ₅ CHO	2a	Me, Me Me C ₆ H ₅ N H	80
1a	ρ-Me-C ₆ H ₄ CHO	2b	ρ -Me-C ₀ H ₄ N $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	85
1a	p-CI-C ₆ H ₄ CHO	2c	p-CI-C ₆ H ₄ N H $3c$	78
1a	p-MeO-C ₆ H₄CHO	2d	$p-MeO-C_6H_4$ N $=$ H $=$ H	88
HO 1b Me,	Me Me 2a		Me, Me	81
HO 1c	Me 2a		C ₆ H ₅ N 3f	79
HO 1d	Me Me 2a		C_6H_5 N C_6H_5 N	80
O OH H	2 b		N N 3h	78
О	2b		N Tolyl-p 3i	76
1f H Ph O OH	2a		Ph N Ph 3j	75

^aThe reactions were conducted under microwave for 6–9 min.

(m, 2H, alkane), 2.60 (m, 2H, alkane), 2.39 (s, 3H, $-\text{CH}_3$), 1.79 (m, 4H, alkane). ^{13}C NMR (75 MHz, CDCl $_3$): δ 161.7, 159.2, 157.4, 139.9, 137.2, 130.0, 129.7, 129.0, 127.7, 126.3, 27.4, 26.1, 21.9, 21.3, 21.1. MS (ESI): m/z = 224 [M $^+$]. Anal. calcd for C $_{15}\text{H}_{16}\text{N}_2$: C, 80.32; H, 7.19; N, 12.49. Found: C, 80.09; H, 7.12; N, 12.56.

2.2.10. 5-Ethyl-2,4-diphenyl-pyrimidine (3j)

Pyrimidine (**3j**) was prepared from **1g**: Yellow gum, yield (0.2 g, 75%); R_f = 0.6 (EtOAc:hexane = 5:95); IR (CHCl₃): ν 2927, 1585, 1563, 1532, 1493, 1423, 1025, 753 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 8.72 (s, 1H, aromatic proton of pyrimidine), 8.50–8.46 (m, 2H, aromatic proton of pyrimidine).

 $^{^{\}mathrm{b}}$ All 2-hydroxymethyleneketones $\mathbf{1a-g}$ were prepared from corresponding 3-oxosteroids and non-steroidal ketones in $\mathbf{88-96}\%$ yields.

^cIsolated yields based on starting 2-hydroxymethyleneketones **1a-g**.

Fig. 1. Synthesis of steroidal pyrimidines 3a from 2-hydroxymethylene-3-ketocholestan 1a.

matic protons), 7.66–7.63 (m, 2H, aromatic protons), 7.52–7.45 (m, 6H, aromatic protons), 2.77 (q, 2H, J=7.53 Hz, $-CH_2$), 1.20 (t, 3H, J=7.53 Hz, $-CH_3$). 13 C NMR (75 MHz, CDCl₃): δ 165.1, 162.2, 158.2, 138.5, 137.8, 131.6, 130.4, 129.2, 128.9 (2C), 128.5 (2C), 128.4 (2C), 128.1 (2C), 23.1, 15.0. MS (ESI): m/z = 260 [M⁺].

3. Results and discussion

The 2-hydroxymethylene-3-ketosteroids (1a-d) were readily prepared from 5α -cholestan-3-one, (24R)-24-ethyl- 5α -cholestan-3-one, cholest-4-en-3-one and (24R)-24-ethyl-cholest-4,22-dien-3-one in excellent yields by following a procedure of Weisenborn et al. [21]. The bicyclic, monocyclic and acyclic 2-hydroxymethylene derivatives (1e-g) were similarly prepared from 1-tetralone, cyclohexanone and butyrophenone respectively (Table 1).

We carried out the three-component reaction of 2-hydroxymethylene-3-ketosteroids, using silica gel (60–120 mesh) as solid phase reaction medium under microwave irradiation and isolating the product over silica gel by column chromatography. Under these conditions, 2-hydroxymethylene-cholestan-3-one (1a) reacted with benzaldehyde (2a) and ammonium acetate to afford 2'-Phenyl-5 α -cholest[3,2-d]pyrimidine (3a) in 80% yield (Fig. 1). The product was characterized by spectral and analytical analysis. The 1 H NMR showed a singlet signal at δ 8.42 due to aromatic proton of pyrimidine ring and absence of the 2-hydroxymethylene olefinic proton at δ 8.75. The 13 C NMR spectrum of 3a exhibited characteristic aromatic carbon signals at δ 165.0, 161.7, 157.4, 137.7, 129.8, 128.2, 127.6 and 126.9. The ESI mass spectrum showed molecular ion peak at m/z 498 (M^+).

We examined the feasibility of this synthetic route by carrying three-component reaction of 1a with other aromatic aldehydes such as p-tolualdehyde (2b), p-chlorobenzaldehyde (2c) and p-anisaldehyde (2d) in presence of ammonium acetate under

identical conditions and obtained $2'-(p-\text{tolyl})-5\alpha-\text{cholest}[3,2-d]$ pyrimidine (**3b**), $2'-(p-\text{chlorophenyl})-5\alpha-\text{cholest}[3,2-d]$ pyrimidine (**3c**) and $2'-(p-\text{anisyl})-5\alpha-\text{cholest}[3,2-d]$ pyrimidine (**3d**) respectively in 78–88% yields. Similarly, $2'-\text{Phenyl}-(24R)-24-\text{ethyl}-5\alpha-\text{cholest}[3,2-d]$ pyrimidine (**3e**), 2'-Phenyl-cholest[3,2-d] pyrimidine (**3f**) and 2'-Phenyl-(24R)-24-ethyl-cholest[3,2-d] pyrimidine 4,22-diene (**3g**) were prepared from 2-hydroxymethylene-(24R)-24-\text{ethyl}-cholestan-3-one (**1b**), 2-hydroxymethylene-cholest-4-en-3-one (**1c**) and 2-hydroxymethylene-(24R)-24-\text{ethyl}-cholestan-4.22-dien-3-one (**1d**) respectively in 79–81% yields.

To extend the scope of the reaction, we employed the three-component reaction strategy to bicyclic, monocyclic and acyclic 2-hydroxymethylene ketones (**1e-g**) with **2a-b** to afford 2-(*p*-tolyl)-5,6-dihydro-benzo[h]quinazoline (**3h**), 2-(*p*-tolyl)-5,6,7,8-tetrahydro-quinazoline (**3i**), 5-ethyl-2,4-diphenyl-pyrimidine (**3j**) in 75–78% yields.

A mechanism is proposed for the formation of pyrimidine derivatives $\bf 3a$ from three-component reaction of $\bf 1a$, benzaldehyde ($\bf 2a$) and ammonium acetate as shown in Fig. 2. Under the influence microwave, the 2-hydroxymethylene-3-ketosteroid ($\bf 1a$) reacted with ammonia, released from decomposition of ammonium acetate, to facilitate amination to afford β -aminoketoimine intermediate $\bf A$ [14]. Condensation of intermediate $\bf A$ with $\bf 2a$ led to diimine intermediate $\bf B$ which participated in cyclisation reaction by nucleophilic attack of the ketoimine to aldeimine affording dihydropyrimidine intermediate $\bf C$ with subsequent auto oxidation to afford $\bf 3a$.

In conclusion, we have developed an efficient microwave promoted three-component reaction of 2-hydroxymethylene-3-ketosteroids, aryldehydes and ammonium acetate for the facile synthesis of A-ring fused steroidal pyrimidines. The reaction strategy has been successfully extended to non-steroidal 2-hydroxymethyleneketone derivatives. The methodology reported herein represents a new preparation of A-ring fused steroidal

Fig. 2. Proposed mechanism for the formation of pyrimidine derivative 3a.

as well as non-steroidal pyrimidines using easily available 2-hydroxymethyleneketones as starting materials. The methodology also provides a facile strategy for A-ring steroidal pyrimidines with an aryl substitution at 2′-position.

Acknowledgements

We thank the Department of Science and Technology, New Delhi for financial support and CSIR, New Delhi for the award of a fellowship to one of us (MGB). We also thank the Director of this Institute for his keen interests.

References

- [1] Undheim K, Benneche T. Pyrimidines and their benzo derivatives. In: Katritzky AR, Rees CW, Scriven EFV, Mckillop A, editors. Comprehensive heterocyclic chemistry II, vol. 6. Oxford: Pergamon; 1996. p. 93–231.
- [2] Jain KS, Chitra TS, Miniyar PB, Kathiravan MK, Bendre VS, Veer VS, et al. Biological and medicinal significance of pyrimidines. Curr Sci 2006;90:793–803
- [3] Botta M, Corelli F, Maga G, Manetti F, Renzulli M, Spadari S. Research on anti-HIV-1 agents. Part 2. Solid-phase synthesis, biological evaluation and molecular modeling studies of 2,5,6-trisubstituted-4(3H)-pyrimidones targeting HIV-1 reverse transcriptase. Tetrahedron 2001;57:8357-67.
- [4] Botta M, Occhionero F, Nicoletti R, Mastromarino P, Conti C, Magrini M, et al. Synthesis and biological evaluation of 2-methoxy- and 2-methylthio-6-[(2'alkylamino)ethyl]-4(3H)-pyrimidinones with anti-rubella virus activity. Bioorg Med Chem 1999:7:1925–31.
- [5] Rasmussen GH, Reynolds GF, Steinberg NG, Walton E, Patel GF, Liang T, et al. Azasteroids: structure-activity relationships for inhibition of 5α -reductase, and of androgen receptor binding. J Med Chem 1986;29:2298–315.
- [6] (a) Heinzl S. Androgenetic alopecia: finasteride treated hair loss. Med Monatsschr Pharm 1999;22:124–7;

- (b) Camoutsis C. Steroidal oxazoles, oxazolines, and oxazolidines. J Heterocycl Chem 1996:33:539–57.
- [7] Singh H, Paul JD, Yadav MR, Kumar M. Heterosteroids and drug research. Prog Med Chem 1991;28:233–300.
- [8] Potter GA, Barrie SE, Jarman M, Rowlands MG. Novel steroidal inhibitors of human cytochrome P450_{17α} (17α-hydroxylase-C1,7 20-lyase): Potent agents for the treatment of prostate cancer. J Med Chem 1995;38:2463–71.
- [9] Burbiel J, Bracher F. Azasteroids as antifungals. Steroids 2003;68:587–94.
- [10] Clinton RO, Manson AJ, Stonner FW, Beyler AL, Potts GO, Arnold A. Steroidal [3,2-c]pyrazoles. J Am Chem Soc 1959;81:1513-4.
- [11] Borthakur M, Barthakur MG, Boruah RC. Microwave promoted one-pot synthesis of novel A-ring fused steroidal dehydropiperazines. Steroids 2008;73:539–42.
- [12] Yan J-Z, Li J, Rao G-W. One-pot synthesis of new A-ring fused steroidal heterocycles. Steroids 2007;72:736–9.
- [13] Gupta R, Pathak D, Jindal DP. Synthesis and biological activity of azasteroidal [3,2-c]- and [17,16-c]pyrazoles. Eur | Med Chem 1996;31:241-7.
- [14] Ackerman JH, Potts GO, Beyler AL, Clinton RO. Steroidal heterocycles. X¹. Steroidal [3,2-d]pyrimidines and related compounds. J Med Chem 1964;7: 238-40.
- [15] Laitonjam WS, Rajkumar TS, Chingakham BS. Synthesis of some A- and D-ring fused steroidal pyrazoles, isoxazoles and pyrimidines. Steroids 2002;67:203–9.
- [16] Barthakur MG, Borthakur M, Devi P, Saikia CJ, Saikia A, Boruah RC, et al. A novel and efficient Lewis acid catalysed preparation of pyrimidines: microwave promoted reaction of urea and β-formyl enamides. Synlett 2007:223–6.
- [17] Orru RVA, de Greef M. Recent advances in solution phase multicomponent methodology for synthesis of heterocyclic compounds. Synthesis 2003:
- [18] Domling A, Ugi I. Multicomponent reactions with isocyanides. Angew Chem Int Ed 2000;39:3168–210.
- [19] Arend M, Westermann B, Risch N. Modern variants of the Mannich reactions. Angew Chem Int Ed 1998;37:1045–70.
- [20] Bora U, Saikia A, Boruah RC. A novel microwave mediated one-pot synthesis of indolizines via a three-component reaction. Org Lett 2003;5:435–8.
- [21] Weisenborn FL, Remy DC, Jacobs TL. Steroids homologs containing pyridazinone and related nuclei. J Am Chem Soc 1954;76:552–5.