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KF/Al2O3 mediated 1,3-dipolar cycloaddition of azomethine
ylides: a novel and convenient procedure for the synthesis

of highly substituted pyrrolidines
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Abstract—The regio- and diastereoselective synthesis of pyrrolidine derivatives through 1,3-dipolar cycloaddition of an azomethine
ylide and dipolarophile mediated by KF/Al2O3, a versatile solid supported reagent, is reported. KF/Al2O3 is sufficiently basic such
that it can deprotonate a-imino esters to generate azomethine ylides and it also functions as a solid supported catalyst leading to the
cycloadduct rather than the Michael adduct.
� 2007 Elsevier Ltd. All rights reserved.
The pyrrolidine ring is present in many biologically
active natural products1 and pharmaceuticals.2 Pyrrol-
idines are important building blocks in organic
synthesis, and have recently emerged as privileged org-
ano-catalysts.3 The 1,3-dipolar cycloaddition reaction
of an azomethine ylide with an electron deficient dipol-
arophile is a rapid method to assemble pyrrolidine rings,
usually in a regio- and stereocontrolled fashion.4 How-
ever, azomethine ylides are unstable and have to be pre-
pared in situ. Several methods have been developed for
the generation of azomethine ylides, but only some of
them have general applicability.5 Among these methods,
the imine tautomerization method6–8 is one of the most
commonly used. Typically, azomethine ylides are gener-
ated from the corresponding a-imino esters by deproto-
nation with a base (e.g., Et3N, DBU, etc.) under thermal
conditions.8 Recent research in this area has involved
Lewis acid [Ag(I), Li(I), Mg(II), Cu(II), etc.] catalyzed
reactions9 and the use of chiral metal complexes in an
asymmetric version.10 However, the use of solid sup-
ported reagents in 1,3-dipolar cycloaddition reactions
is less explored.11

Recently, the use of solid supported reagents in organic
synthesis has received considerable attention due to their
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eco-friendly nature and unique properties, such as en-
hanced reactivity, selectivity, mild conditions, avoidance
of cumbersome aqueous work-up and decreased solvent
handling issues, etc.12 KF/Al2O3 is a widely used solid
supported reagent for catalysis of a variety of reactions.
Due to its strongly basic nature it has been used as a
replacement for organic bases in a number of organic
reactions.11 The application of KF/Al2O3 was first
reported by Bougrin et al.13 in the 1,3-dipolar cycloaddi-
tion of a nitrile imine. To the best of our knowledge,
KF/Al2O3 has not been applied to the cycloaddition
reaction between an azomethine ylide and a
dipolarophile.

In our continuing efforts to develop new methods for the
generation of azomethine ylides14 and their cycloaddi-
tion reactions, we have developed a procedure to pre-
pare pyrrolidine derivatives through 1,3-dipolar
cycloaddition of azomethine ylides mediated by KF/
Al2O3. This solid supported reagent is responsible for
the deprotonation of a-imino esters to generate azome-
thine ylides and also catalyzes the cycloaddition
reaction.

As a model study, we investigated the reaction of the di-
pole generated from imine ester 1a and methyl acrylate
2a (1:1.2 equiv) in the presence of KF/Al2O3 (2 g, 40%
KF in alumina) in THF at room temperature with stir-
ring for 5 h (Scheme 1). This resulted in the clean forma-
tion of endo-isomer 3aa (Scheme 1) in high yield (90% of
the total yield).15 Diastereomer, exo-3aa was also
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Scheme 1. KF/Al2O3 mediated 1,3-dipolar cycloaddition of an
azomethine ylide and a dipolarophile.
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formed (10% of the total yield), whereas, the possible
Michael adduct, 4aa was not observed. The stereochem-
istry of the cycloadduct was determined by spectro-
scopic analysis. Both 1H NMR and 13C NMR spectra
matched well with the literature data.9a

To explore the scope of the [3+2] cycloaddition, we
investigated various a-imino esters derived from aryl-
aldehydes. The reactions of a-imino esters 1b–f with
methyl acrylate (2a) proceeded with high levels of diaste-
reoselectivity, regardless of the electronic properties of
the aromatic ring (Table 1). The presence of a chloro
or bromo substituent at the para position in a-imino
esters 1d and 1e accelerated the reaction which showed
only endo-selectivity. In contrast, decreased diastereo-
selectivity and lower reactivity were observed when
a nitro-group was present at the para position of the
a-imino ester (entry 6). The reaction was carried out in
different solvents, but THF proved to be the best solvent
in terms of regio- and diastereoselectivity and reaction
time.

We also investigated the 1,3-dipolar cycloaddition reac-
tion of the azomethine ylide generated from 1a with var-
ious dipolarophiles as outlined in Table 1. Only the
endo-products were isolated in all cases. The imino ester
Table 1. 1,3-Dipolar cycloaddition reaction of azomethine ylides derived fro

NAr COOEt +

T

KR1

R2

1a-f 2a-f

Entry Imine/dipolarophile Ar R1

1 1a/2a Ph COOMe
2 1b/2a CH3–C6H5 COOMe
3 1c/2a p-MeOC6H4 COOMe
4 1d/2a p-ClC6H4 COOMe
5 1e/2a p-BrC6H4 COOMe
6 1f/2a p-NO2C6H4 COOMe
7 1a/2b Ph CN
8 1a/2c Ph –COCH3

9 1a/2d Ph N-Phe
10 1a/2e Ph COOMe
11 1a/2f Ph Ph

a Isolated yield, determined by GC and based on reactant 1a.
b Stereochemistry determined by 1H NMR.
1a reacted smoothly with N-phenylmaleimide (2d) and
showed complete endo-selectivity. Dimethyl maleate
(2e) and ethyl cinnamate (2f) gave endo-adducts as the
major products, whereas, low reactivity and regioselec-
tivity were observed with vinyl ketone 2c. The cycload-
dition reaction with acrylonitrile (2b) gave poor endo–
exo selectivity in a ratio of 1.6/1 but high regioselectivity
with a total yield of 80%.

Weinstock et al.11b have argued that KF/Al2O3 derives
its basicity from the formation of KOH in the initial
preparation of the solid supported material by reaction
of KF with the alumina support. However, deprotona-
tion of a-imino esters has been investigated by several
groups,5b,16 where imines are deprotonated with sodium
or potassium alkoxide or Triton B in protic or aprotic
solvent. When the resulting species are trapped with
electron deficient olefins, the products are mainly the
corresponding Michael adducts. Competitive formation
of Michael adducts and stereoselective cycloadducts is
also known.16d The base catalyzed cyclization of the
Michael adduct was ruled out as a possible route to the
cycloadduct and a concerted 1,3-dipolar cycloaddition
is the proposed mechanism. Moreover, olefins with elec-
tron withdrawing groups undergo polymerization under
highly basic conditions more readily than cycloaddition.
Therefore, most of the reported methods used weak
organic bases for deprotonation. Only Nájera and
co-workers17 have reported the use of KOH/NaOH
(10 mol %) in this reaction in the presence of a Lewis
acid (i.e., AgOAc) and phase transfer catalyst (PTC).
However, in the KF/Al2O3 mediated cycloaddition reac-
tion, a mildly basic environment is present which avoids
polymerization of the olefin. In addition, it is believed
that the solid support binds the substrate to its surface18

and catalyzes the cycloaddition reaction rather than that
delivering the Michael adduct.

In conclusion, we have described a novel and efficient
method for the 1,3-dipolar cycloaddition reaction of
m imines 1a–f with dipolarophiles 2a–f

N
H
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 endo-3a-f

F/Al2O3

R1
R2

R2 Time (h) Yielda endo-3a,b

H 5 80 90
H 5 75 93
H 5.5 65 88
H 4 85 96
H 4.5 90 98
H 8 70 80
H 6 80 62
H 10 65 60

nylmaleimide 4 90 100
COOMe 5 94 92
COOEt 8 90 86
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azomethine ylides obtained via imine tautomerization
with electron deficient dipolarophiles mediated by solid
supported KF/Al2O3. This cycloaddition produced the
corresponding pyrrolidine derivatives with high stereo-
and regioselectivity in reasonable yields under mild reac-
tion conditions.
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