KF/Al₂O₃ mediated 1,3-dipolar cycloaddition of azomethine ylides: a novel and convenient procedure for the synthesis of highly substituted pyrrolidines

Monalisa Boruah, * Dilip Konwar and Saikat Das Sharma

Organic Chemistry Division, Regional Research Laboratory, Jorhat-6, Assam, India

Received 28 February 2007; revised 19 April 2007; accepted 27 April 2007
Available online 1 May 2007

Abstract—The regio- and diastereoselective synthesis of pyrrolidine derivatives through 1,3-dipolar cycloaddition of an azomethine ylide and dipolarophile mediated by KF/Al₂O₃, a versatile solid supported reagent, is reported. KF/Al₂O₃ is sufficiently basic such that it can deprotonate α-imino esters to generate azomethine ylides and it also functions as a solid supported catalyst leading to the cycloadduct rather than the Michael adduct.

© 2007 Elsevier Ltd. All rights reserved.

The pyrrolidine ring is present in many biologically active natural products¹ and pharmaceuticals.² Pyrrolidines are important building blocks in organic synthesis, and have recently emerged as privileged organo-catalysts.³ The 1,3-dipolar cycloaddition reaction of an azomethine ylide with an electron deficient dipolarophile is a rapid method to assemble pyrrolidine rings, usually in a regio- and stereocontrolled fashion.⁴ However, azomethine ylides are unstable and have to be prepared in situ. Several methods have been developed for the generation of azomethine ylides, but only some of them have general applicability.⁵ Among these methods, the imine tautomerization method⁶–⁸ is one of the most commonly used. Typically, azomethine ylides are generated from the corresponding α-imino esters by deprotonation with a base (e.g., Et₃N, DBU, etc.) under thermal conditions.⁸ Recent research in this area has involved Lewis acid [Ag(I), Li(I), Mg(II), Cu(II), etc.] catalyzed reactions⁹ and the use of chiral metal complexes in an asymmetric version.¹⁰ However, the use of solid supported reagents in 1,3-dipolar cycloaddition reactions is less explored.¹¹

In our continuing efforts to develop new methods for the generation of azomethine ylides¹⁴ and their cycloaddition reactions, we have developed a procedure to prepare pyrrolidine derivatives through 1,3-dipolar cycloaddition of azomethine ylides mediated by KF/Al₂O₃. This solid supported reagent is responsible for the deprotonation of α-imino esters to generate azomethine ylides and also catalyzes the cycloaddition reaction.

As a model study, we investigated the reaction of the dipole generated from imine ester 1a and methyl acrylate 2a (1:1.2 equiv) in the presence of KF/Al₂O₃ (2 g, 40% KF in alumina) in THF at room temperature with stirring for 5 h (Scheme 1). This resulted in the clean formation of endo-isomer 3aa (Scheme 1) in high yield (90% of the total yield).¹⁵ Diastereomer, exo-3aa was also

Keywords: Cycloaddition reaction; KF/Al₂O₃; Azomethine ylide; Regioselectivity; Diastereoselectivity.

* Corresponding author. Tel.: +91 9435353712; fax: +91 0376 2370011; e-mail: lisaderguan@yahoo.co.in
formed (10% of the total yield), whereas, the possible Michael adduct, 4aa was not observed. The stereochemistry of the cycloadduct was determined by spectroscopic analysis. Both 1H NMR and 13C NMR spectra matched well with the literature data. 9a

To explore the scope of the [3+2] cycloaddition, we investigated various α-imino esters derived from arylaldehydes. The reactions of α-imino esters 1b-f with methyl acrylate (2a) proceeded with high levels of diastereoselectivity, regardless of the electronic properties of the aromatic ring (Table 1). The presence of a chloro or bromo substituent at the para position in α-imino esters 1d and 1e accelerated the reaction which showed only endo-selectivity. In contrast, decreased diastereoselectivity and lower reactivity were observed when a nitro-group was present at the para position of the α-imino ester (entry 6). The reaction was carried out in different solvents, but THF proved to be the best solvent in terms of regio- and diastereoselectivity and reaction time.

We also investigated the 1,3-dipolar cycloaddition reaction of the azomethine ylide generated from 1a with various dipolarophiles as outlined in Table 1. Only the endo-products were isolated in all cases. The imino ester 1a reacted smoothly with N-phenylmaleimide (2d) and showed complete endo-selectivity. Dimethyl maleate (2e) and ethyl cinnamate (2f) gave endo-adducts as the major products, whereas, low reactivity and regioselectivity were observed with vinyl ketone 2c. The cycloaddition reaction with acrylonitrile (2b) gave poor endo–exo selectivity in a ratio of 1.6/1 but high regioselectivity with a total yield of 80%.

Weinstock et al. 11b have argued that KF/Al$_2$O$_3$ derives its basicity from the formation of KOH in the initial preparation of the solid supported material by reaction of KF with the alumina support. However, deprotonation of α-imino esters has been investigated by several groups, 5b,16 where imines are deprotonated with sodium or potassium alkoxide or Triton B in protic or aprotic solvent. When the resulting species are trapped with electron deficient olefins, the products are mainly the corresponding Michael adducts. Competitive formation of Michael adducts and stereoselective cycloadducts is also known. 16d The base catalyzed cyclization of the Michael adduct was ruled out as a possible route to the cycloadduct and a concerted 1,3-dipolar cycloaddition is the proposed mechanism. Moreover, olefins with electron withdrawing groups undergo polymerization under highly basic conditions more readily than cycloaddition. Therefore, most of the reported methods used weak organic bases for deprotonation. Only Najera and co-workers 17 have reported the use of KOH/NaOH (10 mol %) in this reaction in the presence of a Lewis acid (i.e., AgOAc) and phase transfer catalyst (PTC). However, in the KF/Al$_2$O$_3$ mediated cycloaddition reaction, a mildly basic environment is present which avoids polymerization of the olefin. In addition, it is believed that the solid support binds the substrate to its surface 18 and catalyzes the cycloaddition reaction rather than that delivering the Michael adduct.

In conclusion, we have described a novel and efficient method for the 1,3-dipolar cycloaddition reaction of

Table 1. 1,3-Dipolar cycloaddition reaction of azomethine ylides derived from imines 1a-f with dipolarophiles 2a-f

<table>
<thead>
<tr>
<th>Entry</th>
<th>Imine/dipolarophile</th>
<th>Ar</th>
<th>R^1</th>
<th>R^2</th>
<th>Time (h)</th>
<th>Yield a</th>
<th>endo-3a,b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a/2a</td>
<td>Ph</td>
<td>COOMe</td>
<td>H</td>
<td>5</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>1b/2a</td>
<td>CH$_3$C$_6$H$_5$</td>
<td>COOMe</td>
<td>H</td>
<td>5</td>
<td>75</td>
<td>93</td>
</tr>
<tr>
<td>3</td>
<td>1c/2a</td>
<td>p-MeC$_6$H$_4$</td>
<td>COOMe</td>
<td>H</td>
<td>5.5</td>
<td>65</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>1d/2a</td>
<td>p-C$_6$H$_4$</td>
<td>COOMe</td>
<td>H</td>
<td>4</td>
<td>85</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>1e/2a</td>
<td>p-BrC$_6$H$_4$</td>
<td>COOMe</td>
<td>H</td>
<td>4.5</td>
<td>90</td>
<td>98</td>
</tr>
<tr>
<td>6</td>
<td>1f/2a</td>
<td>p-NO$_2$C$_6$H$_4$</td>
<td>COOMe</td>
<td>H</td>
<td>10</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>1a/2b</td>
<td>Ph</td>
<td>CN</td>
<td>H</td>
<td>6</td>
<td>80</td>
<td>62</td>
</tr>
<tr>
<td>8</td>
<td>1a/2c</td>
<td>Ph</td>
<td>–COCH$_3$</td>
<td>H</td>
<td>10</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>1a/2d</td>
<td>Ph</td>
<td>N-Phenylmaleimide</td>
<td>COOMe</td>
<td>4</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>1a/2e</td>
<td>Ph</td>
<td>COOMe</td>
<td>COOMe</td>
<td>5</td>
<td>94</td>
<td>92</td>
</tr>
<tr>
<td>11</td>
<td>1a/2f</td>
<td>Ph</td>
<td>COOEt</td>
<td>COOEt</td>
<td>8</td>
<td>90</td>
<td>86</td>
</tr>
</tbody>
</table>

a Isolated yield, determined by GC and based on reactant 1a.

b Stereochemistry determined by 1H NMR.
azomethine ylides obtained via imine tautomerization with electron deficient dipolarophiles mediated by solid supported KF/Al2O3. This cycloaddition produced the corresponding pyrrolidine derivatives with high stereo- and regioselectivity in reasonable yields under mild reaction conditions.

Acknowledgements

We are grateful to DST, New Delhi, India, for the financial support. The authors also acknowledge the Director, Dr. P. G. Rao and the analytical division of RRL, Jorhat, Assam, India, for their help.

References and notes

3. For recent reviews, see: (a) Dalko, P. I.; Moisan, L., Eds.; Pergamon Press: Oxford, 1991; Vol. 4, p 1069. (b) Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon Press: Oxford, 1990; (c) Grigg, R. Tetrahedron: Asymmetry 1999, 10, 1736 cm−1, 1H NMR (CDCl3, 300 MHz): δ 1.35 (t, J = 7.3 Hz, 3H, COOCH3CH2); 2.39 (2H, m, 3-H2), 2.67 (1H, s, NH); 3.19 (3H, s, 4-COOMe), 3.28 (1H, dd, J1,3 = 6.7 and J4,5 = 7.9 Hz, -H); 3.95 (1H, t, J3,5 = 8.4 Hz, 2-H), 4.25 (2H, -COOCH3CH2), 4.89 (1H, d, J4,6 = 7.9 Hz, 5-H), 7.31–7.25 (5H, m, Ph); 13C NMR (CDCl3, 75 MHz): δ 27.7 (M2); Elemental Anal. Calcd C, 64.98; H, 6.86; N, 5.05%. Found: C, 65.05; H, 6.7; N, 4.85.

15. Typical experimental procedure for the KF/Al2O3 mediated 1,3-dipolar cycloaddition: To a stirred solution of α-iminesters 1a (0.25 mmol) in THF (10 mL) was added KF/Al2O3 (2 g, 40% by weight) and methyl acrylate 2a (0.28 mmol). The reaction mixture was vigorously stirred for 5 h and then the solid was filtered from the reaction mixture. THF was evaporated in vacuum, and the residue was dissolved in EtOAc (20 mL). The EtOAc layer was washed with water (10 mL×3), dried over anhydrous sodium sulfate and concentrated under reduced pressure to give a crude product, which was purified by silica gel column chromatography to give 3aa in 80% yield. Analytical data for endo-3aa: IR (CHCl3): 3372 and 1736 cm−1; 1H NMR (CDCl3, 300 MHz): δ 1.35 (t, J = 7.3 Hz, 3H, COOCH3CH2); 2.39 (2H, m, 3-H2), 2.67 (1H, s, NH); 3.19 (3H, s, 4-COOMe), 3.28 (1H, dt, J1,3 = 6.7 and J4,5 = 7.9 Hz, -H); 3.95 (1H, t, J3,5 = 8.4 Hz, 2-H), 4.25 (2H, -COOCH3CH2), 4.49 (1H, d, J4,6 = 7.9 Hz, 5-H), 7.31–7.25 (5H, m, Ph); 13C NMR (CDCl3, 75 MHz): δ 33.60, 50.01, 52.30, 60.00, 65.90, 68.04, 127.0, 127.74, 128.32, 133.2, 139.5, 173.30; 174.00 MS (m/z): 277 (M+). Elemental Anal. Calcd C, 64.98; H, 6.86; N, 5.05%. Found: C, 65.05; H, 6.7; N, 4.85.

