# Materials, Nanoscience and Catalysis

### **Oxidative addition of different electrophiles with** rhodium(I) carbonyl complexes of unsymmetrical phosphine-phosphine monoselenide ligands

Pratap Chutia, Bhaskar Jyoti Sarmah and Dipak Kumar Dutta\*

Material Science Division, Regional Research Laboratory (CSIR), Jorhat 785006, Assam, India

Received 1 March 2006; Revised 16 March 2006; Accepted 26 April 2006

Dimeric chlorobridge complex [Rh(CO)<sub>2</sub>Cl]<sub>2</sub> reacts with two equivalents of a series of unsymmetrical phosphine-phosphine monoselenide ligands,  $Ph_2P(CH_2)_nP(Se)Ph_2$  {n = 1(a), 2(b), 3(c), 4(d)}to form chelate complex [Rh(CO)Cl(P $\cap$ Se)] (1a) {P $\cap$ Se =  $\eta^2$ -(P,Se) coordinated} and non-chelate complexes  $[Rh(CO)_2Cl(P\sim Se)]$  (1b-d) {P~Se =  $\eta^1$ -(P) coordinated}. The complexes 1 undergo oxidative addition reactions with different electrophiles such as CH<sub>3</sub>I, C<sub>2</sub>H<sub>5</sub>I, C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>Cl and I<sub>2</sub> to produce Rh(III) complexes of the type [Rh(COR)ClX(P $\cap$ Se)] {where R = -C<sub>2</sub>H<sub>5</sub> (2a), X = I; R = -CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub> (3a), X = Cl, [Rh(CO)ClI<sub>2</sub>(P $\cap$ Se)] (4a), [Rh(CO)(COCH<sub>3</sub>)ClI(P $\sim$ Se)] (5b-d), [Rh(CO)(COH<sub>5</sub>)ClI-(P $\sim$ Se)] (6b-d), [Rh(CO)(COCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>)Cl<sub>2</sub>(P~Se)] (7b-d) and [Rh(CO)ClI<sub>2</sub>(P~Se)] (8b-d). The kinetic study of the oxidative addition (OA) reactions of the complexes 1 with CH<sub>3</sub>I and C<sub>2</sub>H<sub>5</sub>I reveals a single stage kinetics. The rate of OA of the complexes varies with the length of the ligand backbone and follows the order 1a > 1b > 1c > 1d. The CH<sub>3</sub>I reacts with the different complexes at a rate 10–100 times faster than the C<sub>2</sub>H<sub>5</sub>I. The catalytic activity of complexes 1b-d for carbonylation of methanol is evaluated and a higher turnover number (TON) is obtained compared with that of the well-known commercial species [Rh(CO)<sub>2</sub>I<sub>2</sub>]<sup>-</sup>. Copyright © 2006 John Wiley & Sons, Ltd.

KEYWORDS: rhodium carbonyl complexes; phosphine-phosphine monoselenide; oxidative addition reaction (OA); kinetic study; carbonylation of methanol; IR and NMR spectroscopy

### INTRODUCTION

The unsymmetrical potential polydentate phosphine based ligands bearing N, O, S and Se donor atoms have the focus of several investigations in connection with the coordination chemistry, catalytic properties and structural novelties of their complexes. Particular attention has been paid to the ligands with PN,1-4 PO3-11 and PS<sup>6,7,11-18</sup> donor sets, in part because of the interesting hemilabile nature<sup>19</sup> displayed by these type of ligands. Amongst these, the chemistry of phosphorus-sulfur ligands is rich and a large number of sulfur-containing functionalities like phosphine thiolate,<sup>20,21</sup> phosphine thioethers<sup>22,23</sup> and alkyl-backboned phosphine-phosphine monosulfides<sup>6,7,11-18</sup> as well as the phosphine-phosphine aminemonosulfides like Ph2PNHP(S)Ph2, Ph2PNPhP(S)Ph2 and Ph<sub>2</sub>PNHC<sub>6</sub>H<sub>4</sub>P(S)Ph<sub>2</sub><sup>24-26</sup> were reported. As a

Contract/grant sponsor: Department of Science and Technology, New Delhi

Copyright © 2006 John Wiley & Sons, Ltd.

part of our interest in investigating the structural chemistry of metal-phosphine chalcogenides interactions, particularly with bis-(tertiaryphosphine chalcogenides), we have reported27,28 a few ruthenium carbonyl complexes with the ligands  $Ph_2P(CH_2)_nP(S)Ph_2$ , n = 1 - 4. In contrast, a few reports exist phosphine phosphine monoselenide complexes.11,15,29-34 Recently, Dutta et al.35 reported on the rhodium carbonyl complexes of the types [Rh(CO)Cl(Ph<sub>2</sub>PCH<sub>2</sub>P(Se)Ph<sub>2</sub>)] and [Rh(CO)Cl(Ph<sub>2</sub>PN(CH<sub>3</sub>)P(Se)Ph<sub>2</sub>)] and their catalytic activity.

Substantial activity has been aroused on the synthesis of rhodium carbonyl complexes because of their versatile application in homogeneous catalysis, such as carbonylation of alcohols. The oxidative addition (OA) reactions of different electrophiles like CH<sub>3</sub>I, C<sub>2</sub>H<sub>5</sub>I, C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>Cl, I<sub>2</sub> etc. to square planar transition metal centers such as Rh(I) complexes is a fundamental process in organometallic chemistry with significant implications in catalytic carbonylation of alcohols. The OA of various organic halides, particularly methyl iodide to neutral rhodium(I) carbonyl phosphine complexes of monodentate and bidentate ligands, have been extensively



<sup>\*</sup>Correspondence to: Dipak Kumar Dutta, Material Science Division, Regional Research Laboratory (CSIR), Jorhat 785006, Assam, India. E-mail: dipakkrdutta@yahoo.com

## AOC Materials, Nanoscience and Catalysis

studied.<sup>36</sup> In our previous report,<sup>37</sup> the details of possible intermediates through an OA reaction have been described. It is of interest how the steric and electronic properties as well as length of ligand backbone affect the rates of the OA reactions.

In view of the above, we have carried out the synthesis and characterization of neutral rhodium(I) carbonyl complexes with phosphine–phosphine monoselenide ligands,  $Ph_2P(CH_2)_nP(Se)Ph_2$ , n = 1-4 and also studied the OA reactions of these complexes with the electrophiles  $CH_3I$ ,  $C_2H_5I$ ,  $C_6H_5CH_2Cl$  and  $I_2$ . The effect of chain-length of ligand backbones on the rate of OA reactions of the complexes particularly with methyl iodide and ethyl iodide along with catalytic activity of the complexes for the carbonylation of methanol are also included in the present communication.

### **EXPERIMENTAL**

#### **Materials**

All the solvents used were distilled under nitrogen prior to use. Chlorides were analyzed using a standard analytical method.<sup>38</sup> RhCl<sub>3</sub>·3H<sub>2</sub>O was purchased from M/s Arrora Matthey Ltd, Kolkata, India. Analytically pure Ph<sub>2</sub>P(CH<sub>2</sub>)<sub>n</sub>PPh<sub>2</sub> (n = 1-4) and elemental selenium were purchased from M/s Aldrich, USA and used without further purification. The ligands, Ph<sub>2</sub>P(CH<sub>2</sub>)<sub>n</sub>P(Se)Ph<sub>2</sub> were prepared by refluxing a solution of Ph<sub>2</sub>P(CH<sub>2</sub>)<sub>n</sub>PPh<sub>2</sub> (n = 1-4) in toluene with one molar equivalent of elemental selenium for 3 h under nitrogen and purified by chromatographic techniques.<sup>16,31</sup>

#### Starting material

The starting dimeric rhodium moiety  $[Rh(CO)_2Cl]_2$  was prepared by passing CO gas over  $RhCl_3 \cdot 3H_2O$  powder at 100 °C in the presence of water.<sup>39</sup>

#### Instrumentation

FT-IR spectra of range  $400-4000 \text{ cm}^{-1}$  were recorded using Perkin-Elmer 2000 spectrophotometer in KBr disk. Carbon and hydrogen analyses were carried out on a Perkin-Elmer 2400 elemental analyzer. NMR data were recorded on a Bruker DPX 300 MHz spectrometer and the <sup>1</sup>H and <sup>31</sup>P NMR chemical shifts were quoted relative to SiMe<sub>4</sub> and 85% H<sub>3</sub>PO<sub>4</sub> as internal and external standard respectively using CDCl<sub>3</sub> and d<sub>6</sub>-acetone as solvent. The carbonylation reactions of methanol were carried out in a 100 cm<sup>3</sup> teflon coated high pressure reactor (HR-100 Berghof, Germany) fitted with a pressure gage and the reaction products were analyzed by GC (Chemito 8510, FID).

### Synthesis of complexes

 $[\check{R}h(CO)Cl(P \cap Se)]^{\dagger}(1a)$  and  $[Rh(CO)_2Cl(P \sim Se)]$  $(1b-d); P \cap Se = \eta^2 - (P,Se)$  coordinated  $a, P \sim Se$  $= \eta^1 - (P)$  coordinated b-d

 $[Rh(CO)_2Cl]_2$  (50 mg, 0.129 mmol) was dissolved in  $CH_2Cl_2$  (10 cm³) and was added drop wise to the 10 cm³  $CH_2Cl_2$ 

solution of 0.257 mmol corresponding ligands  $\mathbf{a}-\mathbf{d}$  with constant stirring under nitrogen atmosphere. The reaction mixtures were stirred at room temperature (r.t.) for about 1 h and the solvent was evaporated under reduced pressure in a rotavapor to obtain yellow solid compounds which were washed with diethyl ether. All the complexes were stored in the dark.

# [ $Rh(COR)CIX(P \cap Se)$ ]; $R = -C_2H_5$ (**2a**), X = I and $R = -CH_2C_6H_5$ (**3a**), X = Cl; $P \cap Se = \eta^2$ -(P,Se) coordinated **a**

A 0.0318 mmol (20 mg) aliquot of complex **1a** was dissolved in 10 cm<sup>3</sup> dichloromethane. To this solution 6 cm<sup>3</sup> **RX** (**RX** = C<sub>2</sub>H<sub>5</sub>I, C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>Cl) were added. The reaction mixtures were then stirred at r.t. for about 4 and 12 h for C<sub>2</sub>H<sub>5</sub>I and C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>Cl, respectively, and the solvent was evaporated under vacuum. Reddish-black compounds so obtained were washed with diethyl ether and stored in the dark.

### $[Rh(CO)ClI_2(P \cap Se)] (4a); P \cap Se = \eta^2 - (P,Se)$ coordinated a

A 0.0159 mmol aliquot of the complex **1a** (10 mg) was dissolved in 20 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub> and 4.033 mg of I<sub>2</sub> (0.0318 mmol) were added. The reaction mixture was stirred for 0.5 h. The solvent was evaporated under reduced pressure to obtain a reddish-black solid compound. After washing with diethyl ether, the compound was kept in the dark.

### $[Rh(CO)(COCH_3)ClI(P \sim Se)] (5b-d); P \sim Se = \eta^1 - (P) \text{ coordinated } b-d$

To a solution of the complexes 1b-d prepared by dissolving 0.0149 mmol of the corresponding complexes in 40 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub>, about 6 cm<sup>3</sup> of CH<sub>3</sub>I were added and stirred for 1.5 h. The reddish-black compounds so obtained were washed with diethyl ether and dried *in vacuo* and stored in the dark.

### $[Rh(CO)(COC_2H_5)CII(P \sim Se)] (6b-d); P \sim Se = \eta^1 - (P) \text{ coordinated } b-d$

A 6 cm<sup>3</sup> aliquot of  $C_2H_5I$  was added to the 10 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub> solution of the corresponding complexes **1b**-**d** (0.0149 mmol). The reaction mixture was stirred for 4 h at r.t. during which time the color of the solution changes from red to reddish-black. On evaporating the solvent and washing with diethyl ether reddish-black colored solid compounds were obtained, which were stored in the dark.

### $[Rh(CO)(COCH_2C_6H_5)Cl_2(P \sim Se)] (7b-d); P \sim Se = \eta^1 - (P) \text{ coordinated } b-d$

A 0.0149 mmol aliquot of  $[Rh(CO)_2Cl(P \sim Se)]$  (**1b**–**d**) was dissolved in 20 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub> to which 6 cm<sup>3</sup> of C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>Cl were added and the reaction mixture was stirred for about 12 h. The resulting solutions were dried in vacuum and the solid compounds were washed with diethyl ether to obtain reddish-black compounds which were kept in the dark.

A 3.78 mg (0.0298 mmol) aliquot of I<sub>2</sub> was added to a 20 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub> solution containing [Rh(CO)<sub>2</sub>Cl(P  $\sim$  S)] (1b-d) (0.0149 mmol) and the reaction mixtures were stirred for 0.5 h at r.t. The resulting solutions were dried in vacuo and the solid compounds were washed with diethyl ether to obtain reddish-black compounds, which were stored in the dark.

#### **Kinetic experiment**

FT-IR spectroscopy was employed to monitor the kinetic experiments of OA reactions of the complexes 1b-d with CH<sub>3</sub>I and 1a-d with C<sub>2</sub>H<sub>5</sub>I in a solution cell of 1.0 mm path length. Ten milligrams of complexes were added to (i)  $1 \text{ cm}^3$  ( $16 \times 10^{-3} \text{ mol}$ ) neat CH<sub>3</sub>I, (ii) 0.75 cm<sup>3</sup>  $(11.92 \times 10^{-3} \text{ mol}) \text{ CH}_3\text{I}$  and  $0.25 \text{ cm}^3$  dichloromethane, (iii)  $0.50 \text{ cm}^3$  (8 × 10<sup>-3</sup> mol) CH<sub>3</sub>I and 0.50 cm<sup>3</sup> dichloromethane or (iv) 1 cm<sup>3</sup> (12.25  $\times$  10<sup>-3</sup> mol) neat C<sub>2</sub>H<sub>5</sub>I at 25 °C. An aliquot of the reaction mixtures were transferred by a syringe into the IR cell. Then kinetic measurements were made by monitoring the simultaneous decay of lower energy terminal  $\nu$ (CO) band of the complexes and increasing the intensity of the acyl  $\nu$ (CO) band of the corresponding acyl complexes. A series of spectra were recorded at regular time intervals.

### Carbonylation of methanol using complexes 1b-d as catalyst precursors

In the reactor CH<sub>3</sub>OH (4 ml, 0.099 mol), CH<sub>3</sub>I (1 ml, 0.016 mol),  $H_2O$  (1 ml, 0.056 mol) and complexes 1b-d(0.054 mmol) were taken and then pressurized with CO (18 bar at r.t., 0.072 mol). The reaction vessel was then placed into the preheated jacket of the autoclave and the reactions were carried out at  $130 \pm 5 \,^{\circ}$ C (corresponding pressure  $35 \pm 2$  bar) for 1 h. The products were collected and analyzed using GC.

#### **RESULTS AND DISCUSSION**

### Synthesis and characterization of Rh(I) complexes

The reactions of two equivalent of the ligands  $Ph_2P(CH_2)_n$  $P(Se)Ph_2 \{n = 2-4(b-d)\}$  with the chloro bridge dimeric complex [Rh(CO)<sub>2</sub>Cl]<sub>2</sub> lead to the formation of dicarbonyl non-chelate complexes of the type  $[Rh(CO)_2Cl(P \sim Se)]$ (**1b-d**) { $P \sim Se = \eta^1$ -(P) coordinated}(Scheme 1) while the ligand Ph<sub>2</sub>PCH<sub>2</sub>P(Se)Ph<sub>2</sub> (a) yields the monocarbonyl chelate complex [Rh(CO)Cl(Ph<sub>2</sub>PCH<sub>2</sub>P(Se)Ph<sub>2</sub>)] (1a) (Scheme 1) as reported in our earlier work.<sup>35</sup> The elemental (C, H, Cl) analysis data of the complexes 1a-d match well with the calculated ones (Table 1). The monocarbonyl complex **1a** shows a  $\nu$ (CO) band at around 1977 cm<sup>-1</sup> (Table 2), while 1b-d exhibit two equally intense v(CO) bands in the range 1984–2067 cm<sup>-1</sup>, indicating *cis* disposition of the two terminal carbonyl groups.<sup>37,40</sup> The  $\nu$ (PSe) band of **1a** occurs at

Table 1. Elemental analyses of the complexes 1–8

|                 |           | Elemental analysis:<br>found (calcd) in % |            |            |  |  |
|-----------------|-----------|-------------------------------------------|------------|------------|--|--|
| Complex         | Yield (%) | С                                         | Н          | Cl         |  |  |
| 1a <sup>a</sup> | 92        | 49.12(49.60)                              | 3.42(3.49) | 5.67(5.64) |  |  |
| 1b              | 89        | 50.00(50.01)                              | 3.54(3.57) | 5.30(5.28) |  |  |
| 1c              | 96        | 50.72(50.74)                              | 3.77(3.79) | 5.15(5.18) |  |  |
| 1d              | 94        | 51.41(51.44)                              | 4.03(4.00) | 5.04(5.07) |  |  |
| 2a              | 90        | 42.71(42.76)                              | 3.40(3.44) | 4.49(4.52) |  |  |
| 3a              | 96        | 52.33(52.36)                              | 3.82(3.83) | 9.37(9.39) |  |  |
| 4a              | 93        | 35.34(35.30)                              | 2.47(2.49) | 3.98(4.02) |  |  |
| 5b              | 94        | 42.75(42.76)                              | 3.33(3.38) | 4.40(4.36) |  |  |
| 5c              | 94        | 43.45(43.49)                              | 3.52(3.50) | 4.30(4.29) |  |  |
| 5d              | 87        | 44.20(44.19)                              | 3.65(3.68) | 4.19(4.22) |  |  |
| 6b              | 91        | 43.48(43.49)                              | 3.53(3.50) | 4.27(4.29) |  |  |
| 6c              | 88        | 44.21(44.19)                              | 3.64(3.68) | 4.18(4.22) |  |  |
| 6d              | 90        | 44.85(44.87)                              | 3.83(3.85) | 4.12(4.15) |  |  |
| 7b              | 89        | 52.58(52.61)                              | 3.86(3.88) | 8.87(8.89) |  |  |
| 7c              | 87        | 53.20(53.18)                              | 4.03(4.06) | 8.76(8.74) |  |  |
| 7d              | 97        | 53.75(53.73)                              | 4.25(4.23) | 8.57(8.59) |  |  |
| 8b              | 87        | 36.07(36.09)                              | 2.63(2.67) | 3.91(3.95) |  |  |
| 8c              | 94        | 36.81(36.85)                              | 2.84(2.85) | 3.90(3.89) |  |  |
| 8d              | 92        | 37.57(37.59)                              | 3.00(3.02) | 3.80(3.83) |  |  |

<sup>a</sup> Our earlier report.<sup>35</sup>

513 cm<sup>-1</sup>, which is significantly lower than the free ligand **a**  $\{\nu(PSe) = 527 \text{ cm}^{-1}\}$  and thus indicates the chelate formation in the complex 1a through the Rh-Se bond. In contrast, the ligands b-d in the complexes 1b-d coordinate to the metal center through their tertiary phosphorus atom only, which is corroborated by the IR spectra (Table 2) of the  $\nu$ (PSe) stretchings which are close to the corresponding free ligand bands.<sup>27,33</sup> The <sup>1</sup>H NMR spectra of **1a** (Table 2) show a triplet resonance at  $\delta$  4.3 ppm (–CH<sub>2</sub>–) along with the Ph protons in the range  $\delta$  7.19–7.69 ppm. Similarly, the complexes **1b**–**d** display two multiplet resonances in the range  $\delta$  7.19–7.50 and  $\delta$  7.63–7.84 ppm attributed to two non-equivalent phenylic protons and another two multiplet resonances at around  $\delta$ 2.10-2.84 ppm for methylene protons. The methylene protons of the complexes show little downfield shift compared with the corresponding free ligands, which further substantiates the non-chelating mode of the ligands. The <sup>31</sup>P{H} NMR spectra (Table 2) of 1a exhibit doublet of doublets centered at  $\delta = 51.1$  ppm for the tertiary phosphorus atom (P<sub>1</sub>) bonded to the metal center and a doublet at  $\delta = 35.2$  ppm for the pentavalent phosphorus atom  $(P_2)$  bonded to the selenium. The remarkable downfield shifts of these two resonances compared with the free ligand a further substantiate the chelation in the complex. Similarly, for the complexes 1b-d, the P1 phosphorus atoms resonate as a doublet of doublets at relatively lower field ( $\delta$  37.24–57.59 ppm;  $J_{Rh-P} = 131-137$  Hz,  $J_{P-P} = 26-59$  Hz) than the P<sub>2</sub> phosphorus atoms, which appear as a doublet resonance in the range  $\delta$  35.24–37.76 ppm



### AOC Materials, Nanoscience and Catalysis



Scheme 1. Synthesis of Rh(I) and Rh(III) carbonyl complexes containing P-Se donor ligands.

 $(J_{P-P} = 26-59 \text{ Hz})$ . The positions of the P<sub>2</sub> resonances are close to that of the corresponding free ligands, whilst large downfield shifts of about 52–71 ppm are observed for the P<sub>1</sub> resonances compared with the free ligands. Thus the <sup>31</sup>P{H} NMR spectra are also consistent with monodentate coordination nature of the **b**-**d** ligands through the tertiary phosphorus (P<sub>1</sub>) atom.<sup>33</sup>

### Oxidative addition reactions of Rh(I) complexes with different electrophiles

One of the most important industrial processes utilizing homogeneous transition-metal catalysis is the rhodium- and iodide-promoted carbonylation of methanol to acetic acid. In this respect, OA reaction of alkyl halides with metal complexes is a very important reaction as it is the key step in the carbonylation catalysis.<sup>41</sup> Therefore, oxidative reactivities of **1a-d** towards various electrophiles were evaluated.

The preliminary OA reaction of 1a with CH<sub>3</sub>I, as reported by us,35 has now been extended and evaluated thoroughly with other electrophiles like C2H5I, C6H5CH2Cl and I<sub>2</sub>. With the alkyl halide **RX** (= $C_2H_5I$ ,  $C_6H_5Cl$ ), the chelate complex 1a forms the Rh(III) acyl chelate complexes like  $[Rh(COR)ClX(P \cap Se)]$  { $R = -C_2H_5$  (2a); X = I and R = $-CH_2C_6H_5$  (3a), X = Cl} (Scheme 1), displaying a new  $\nu$ (CO) band at 1693 and 1712 cm<sup>-1</sup>, respectively. The  $\nu$ (PSe) bands of the complexes 2a and 3a occur at 507 and  $508 \text{ cm}^{-1}$ , respectively, indicating chelate formation. The <sup>1</sup>H NMR spectra of the complex 2a consist of one triplet at  $\delta$  1.80 ppm for the methyl protons and one quartet at  $\delta$  3.52 ppm for the methylene protons of the ethyl group in addition to the characteristic ligand signals. The methylene protons of the  $-CH_2C_6H_5$  group in the complex **3a** show a singlet at around  $\delta$  3.72 ppm, which is due to deshielding effect of the electron withdrawing phenyl group.<sup>42</sup> The I<sub>2</sub> adds oxidatively to the complex 1a to form the monocarbonyl chelate complex  $[Rh(CO)CII_2(P \cap Se)]$  (4a; Scheme 1), which exhibits only

Table 2. IR (cm<sup>-1</sup>), <sup>1</sup>H and <sup>31</sup>P NMR (δ, ppm; J, Hz) spectroscopic data of the complexes **1a-d** and oxidized products **2-8** 

| $IR (cm^{-1})$  |                    | L <sup>-1</sup> ) | <sup>31</sup> P-{H} NMR |                 |                   |                  | <sup>1</sup> H NMR     |              |                 |                 |
|-----------------|--------------------|-------------------|-------------------------|-----------------|-------------------|------------------|------------------------|--------------|-----------------|-----------------|
| Complex         | v(CO)              | v(PSe)            | $\delta_{ m P}$         | $\delta_{P=Se}$ | J <sub>Rh-P</sub> | J <sub>P-P</sub> | $C_6H_5$               | $-(CH_2)_n-$ | CH <sub>2</sub> | CH <sub>3</sub> |
| 1a <sup>a</sup> | 1977               | 513               | 51.10dd                 | 35.20d          | 164               | 56               | 7.19–7.43m, 7.60–7.69m | 4.32t        |                 | _               |
| 1b              | 1988 <i>,</i> 2067 | 531               | 57.59dd                 | 37.76d          | 131               | 59               | 7.19-7.50m, 7.68-7.84m | 2.49m, 2.84m | _               | _               |
| 1c              | 1984, 2062         | 532               | 57.59dd                 | 37.76d          | 132               | 59               | 7.19–7.50m, 7.67–7.81m | 2.49m, 2.83m | —               | _               |
| 1d              | 1992 <i>,</i> 2067 | 526               | 37.24dd                 | 35.24d          | 137               | 26               | 7.24–7.44m, 7.63–7.77m | 2.10m, 2.57m | —               | _               |
| 2a              | 1693               | 507               | 51.45dd                 | 35.07d          | 150               | 56               | 7.24–7.46m, 7.57–7.65m | 4.25t        | 3.52q           | 1.80t           |
| 3a              | 1712               | 508               | 53.40dd                 | 37.08d          | 154               | 63               | 7.22–7.49m, 7.60–7.75m | 4.32t        | 3.72s           | _               |
| 4a              | 2072               | 506               | 56.32dd                 | 41.30d          | 161               | 58               | 7.29–7.65m, 7.75–8.09m | 4.20t        | —               | _               |
| 5b              | 2071, 1713         | 528               | 50.76dd                 | 37.78d          | 140               | 99               | 7.24–7.47m, 7.61–8.06m | 2.39m, 2.82m | —               | 3.16s           |
| 5c              | 2075, 1702         | 527               | 48.55dd                 | 37.76d          | 105               | 59               | 7.24–7.48m, 7.61–8.06m | 2.40m, 2.83m | —               | 3.16s           |
| 5d              | 2063, 1707         | 522               | 34.85dd                 | 32.56d          | 135               | 17               | 7.24–7.44m, 7.71–7.77m | 2.07m, 2.57m | _               | 3.45s           |
| 6b              | 2022, 1701         | 528               | 49.48dd                 | 37.60d          | 100               | 90               | 7.26–7.51m, 7.68–7.82m | 2.20m, 2.85m | 3.48q           | 1.50t           |
| 6c              | 2022, 1697         | 528               | 57.59dd                 | 38.29d          | 132               | 55               | 7.26-7.45m, 7.70-8.05m | 2.52m, 2.85m | 3.35q           | 2.17t           |
| 6d              | 2057, 1694         | 531               | 34.50dd                 | 32.49d          | 137               | 20               | 7.19–7.40m, 7.64–7.74m | 2.10m, 2.65m | 3.40q           | 1.66t           |
| 7b              | 2023, 1714         | 528               | 52.52dd                 | 34.73d          | 110               | 86               | 7.20–7.53m, 7.73–7.98m | 2.44m, 2.80m | 3.65s           | _               |
| 7c              | 2022, 1711         | 529               | 44.90dd                 | 36.52d          | 102               | 62               | 7.29–7.51m, 7.69–7.89m | 2.56m, 2.88m | 3.86s           | _               |
| 7d              | 2068, 1714         | 531               | 39.28dd                 | 36.28d          | 134               | 23               | 7.20-7.49m, 7.61-7.98m | 2.06m, 2.65m | 3.98s           | _               |
| 8b              | 2076               | 529               | 49.58dd                 | 37.77d          | 122               | 78               | 7.18–7.52m, 7.65–7.82m | 2.47m, 2.80m | _               | _               |
| 8c              | 2076               | 529               | 55.50dd                 | 37.75d          | 114               | 52               | 7.20-7.53m, 7.66-7.84m | 2.51m, 2.81m | _               | _               |
| 8d              | 2073               | 520               | 43.38dd                 | 34.24d          | 140               | 30               | 7.22–7.44m, 7.60–7.81m | 2.13m, 2.60m | —               | —               |

<sup>a</sup> Our earlier report.<sup>35</sup>

Free ligands (**a**-**d**): IR,  $\nu$ (PSe): 527(**a**), 530(**b**), 531(**c**), 531(**d**); <sup>31</sup>P NMR,  $\delta_{P}$  and  $\delta_{P=Se}$ , -26.4, 31.3d { $J_{P-P}^2 = 85$  Hz} (**a**); -12.71, 36.55d { $^{3}J_{P-P} = 50$  Hz} (**b**); -12.34, 36.75d { $^{4}J_{P-P} = 50$  Hz} (**c**); -15.30, 34.47d { $^{5}J_{P-P} = 15$  Hz} (**d**); <sup>1</sup>H NMR: -(CH<sub>2</sub>)<sub>n</sub> - : 3.49d (**a**), 2.10m, 2.86m (**b**); 2.15m, 2.53m (**c**); 2.01m, 2.54m (**d**); s, singlet; d, doublet; dd, doublet doublet; t, triplet; q, quartet; m, multiplet.

one terminal characteristic  $\nu$ (CO) band of Rh(III) complex at 2072 cm<sup>-1</sup>. The  $\nu$ (PSe) band for the complex appears at 506 cm<sup>-1</sup>, suggesting the retention of a chelate ring.

The non-chelate complexes 1b-d are coordinately unsaturated and like 1a undergo OA reactions with the different electrophiles like CH<sub>3</sub>I, C<sub>2</sub>H<sub>5</sub>I, C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>Cl and I<sub>2</sub> to afford Rh(III) complexes (Scheme 1). The OA of  $CH_3I$  with complexes 1b-dgive penta coordinated rhodium (III) acyl complexes of the type  $[Rh(CO)(COCH_3)CII(P \sim Se)]$  (5b-d), which may form through non-isolable hexa-coordinated intermediates. The IR spectra (Table 2) of the complexes 5b-d show two different types of  $\nu$ (CO) bands in the range 2063–2075 and 1702–1713 cm<sup>-1</sup> assignable to terminal and acyl carbonyl groups respectively.<sup>37,40</sup> The higher values of the terminal  $\nu$ (CO) band indicate the formation of the oxidized products. The  $\nu$ (PSe) bands for the complexes **5b-d** appear at around 522-528 cm<sup>-1</sup>, corroborating the monodentate nature of the ligands. Apart from the characteristic resonances of the ligands, the <sup>1</sup>H NMR spectra of complexes **5b–d** (Table 2) show a singlet in the region  $\delta$  3.16–3.45 ppm, indicating the formation of a -COCH<sub>3</sub> group. In a similar manner, OA reactions of the alkyl halide C2H5I and C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>Cl with the complexes **1b-d** afford penta coordinated complexes, viz.  $[Rh(CO)(COC_2H_5)CII(P \sim Se)]$  (6b-d) and  $[Rh(CO)(COCH_2C_6H_5)Cl_2(P \sim Se)]$  (7b-d) (Scheme 1). The IR spectral values (Table 2) of the  $\nu$ (PSe) bands of

these complexes clearly imply the tertiary P coordination of the ligands to the metal. The  $\nu$ (CO) bands of the complexes occur in the range 2022–2068 and 1694–1714 cm<sup>-1</sup> and are attributable to terminal and acyl carbonyl groups, respectively. The <sup>1</sup>H NMR spectra of the complexes **6b-d** show one triplet in the range  $\delta$  1.50–2.17 ppm for the methyl protons and one quartet signal at around  $\delta$  3.35–3.48 ppm for the methylene protons of the ethyl group in addition to the characteristic ligand bands. The methylene protons of the  $-CH_2C_6H_5$  groups in the complexes 7b-d appear as a singlet at around  $\delta$  3.65–3.98 ppm along with the other characteristic signals. The OA reactions of I2 with the dicarbonyl complexes 1b-d occur very rapidly, affording monocarbonyl complexes  $[Rh(CO)ClI_2(P \sim Se)]$  (8b-d) substantiated by a single terminal  $\nu$ (CO) band in the range 2073–2076 cm<sup>-1</sup>. As I<sub>2</sub> adds oxidatively to Rh(I) dicarbonyl complexes 1b-d, both the iodides pull electron density towards them from the metal center oxidizing it to Rh(III) state. The Rh-CO bonds become destabilized as a result of decrease in  $\pi$ -back bonding due to insufficient electron on the metal center<sup>43</sup> and, consequently, one of the CO groups is eliminated to form a stable monocarbonyl Rh(III) acyl compound. The decrease in  $\pi$ -back bonding is evidenced from the higher shifting  $(6-14 \text{ cm}^{-1})$  of the terminal v(CO) band in the oxidized complexes 8b-d compared with the parent complexes 1b-d.<sup>44</sup> The  $\nu$ (PSe) values are consistent with the non-chelating behavior of the ligands. The <sup>1</sup>H NMR spectra (Table 2) of these oxidized complexes show that there is not much change in the chemical shift compared with the parent complexes. The <sup>31</sup>P {H}NMR data of all the oxidized complexes (Table 2) show the similar pattern of spectral data with the corresponding parent complexes.

Depending on the stereochemical arrangement of the ligands **R** and **X** of the alkyl halides **RX**, several hexa-coordinated alkyl intermediates are possible during OA reactions. As most of the penta-coordinated carbonyl–Rh(III)–acyl complexes reported are square pyramidal in nature,<sup>45,46</sup> it is likely that all the acyl complexes would also have a similar geometry. The presence of a single high terminal  $\nu$ (CO) value is consistent with CO group *trans* to a weak *trans* influencing chloride.<sup>45</sup> On the other hand, in view of high *trans* influencing nature, the acyl group favors apical position *trans* to the vacant coordination site.<sup>6,13</sup> Thus, the most probable structure of the intermediates and the acyl complexes are represented in Scheme 1. In the complexes **4a** and **8b–d**, iodine prefers to coordinate to the metal centers at *trans* to each other.<sup>47</sup>

The literature<sup>45</sup> reveals that such OA reactions may lead to the formation of different isomeric, oligomeric or halide-exchanged species, which are difficult to establish even with sophisticated analytical tools. However, in our study the  $\nu$ (CO) bands in the IR spectra, the NMR data and elemental analyses do not indicate the presence of any such isomeric or halide-exchanged species, but the possibility of the existence of these cannot be ruled out. Substantiation of the structures of different rhodium(I) and rhodium(III) carbonyl complexes/isomers by X-ray crystal structure determination was not possible because no suitable crystals could be developed despite several attempts.

### Kinetics of OA reactions of Rh(I) complexes with CH<sub>3</sub>I and C<sub>2</sub>H<sub>5</sub>I

The dicarbonyl rhodium(I) complexes  $[Rh(CO)_2Cl(P \sim Se)]$ (1b-d) are coordinately unsaturated and undergo rapid OA reactions with CH<sub>3</sub>I similar to our preliminary report<sup>35</sup> on the kinetics of the complex 1a with CH<sub>3</sub>I where a single stage kinetics was observed ( $k_{obs} = 2.467 \times 10^{-3} \text{ s}^{-1}$ ). The reactivities of the complexes vary with the chain-length of the ligand backbones. To determine the rate of OA, in situ IR was taken during the course of the reaction. The reaction kinetics were monitored by following the simultaneous decay of the lower v(CO) absorption of the complexes 1b-din the region 1984–1992 cm<sup>-1</sup> and the formation of acyl v(CO) band of the corresponding acyl complexes 5b-d in the range 1702-1713 cm<sup>-1</sup>. During the course of the OA reactions of the complexes with CH<sub>3</sub>I, a series of IR spectra were recorded at different time intervals and a typical set of spectral pattern for complex 1b is shown in Fig. 1. It is clear that, out of the two terminal  $\nu(CO)$  bands, the intensity of the lower  $\nu$ (CO) band occurring at 1988 cm<sup>-1</sup> decreases while the higher  $\nu$ (CO) band at 2067 cm<sup>-1</sup> shifts to  $2071 \text{ cm}^{-1}$ .



**Figure 1.** Series of IR spectra ( $\nu$ (CO) region) showing the OA reaction of **1b** with CH<sub>3</sub>I at room temperature. The arrows ( $\uparrow$ ) and ( $\downarrow$ ) indicate the decrease and increase in intensity of the terminal and acyl  $\nu$ (CO) bands, respectively, with the progress of the reaction.

The rate of the OA reaction was found to be dependent on both the concentration of complexes 1b-d and  $CH_{3}I$ . The rate was evaluated by applying pseudo-first-order condition, i.e. at high concentration (neat) of CH<sub>3</sub>I (1 cm<sup>3</sup>,  $16 \times 10^{-3}$  mol). The formations of acyl complexes from the parent complexes 1b-d as a function of time are shown in Fig. 2. The decaying curves of the parent complexes 1b-d indicate that the entire course of the OA reactions proceeds in an exponential manner and is completed at around 30, 35 and 40 min, respectively. Applying the pseudo-first-order condition, the plot of  $\ln(A_0/A_t)$  vs t (Fig. 3), where  $A_0$  and  $A_t$  are the concentrations of the complexes at time t = 0 and *t*, respectively, shows a good linear fit for the entire course of the reaction. The slopes of the plots give the pseudofirst-order rate constants  $k_{\rm obs} = 2.34 \times 10^{-3}$ ,  $2.30 \times 10^{-3}$  and  $1.67 \times 10^{-3}$  s<sup>-1</sup> for the complexes **1b-d** respectively (Table 3). Thus the reactivity of the complexes follows the order 1a > 1b > 1c > 1d and the trend may be due to steric hindrance of the ligands where it increases with increase of the chain-length of the backbone. To find out the dependence of reaction rate on concentration of CH<sub>3</sub>I, in addition to measurements in neat CH<sub>3</sub>I (1 cm<sup>3</sup>,  $16 \times 10^{-3}$  mol), reactions were also carried out in (i)  $0.5 \text{ cm}^3$  (8 × 10<sup>-3</sup> mol) CH<sub>3</sub>I and  $0.5 \text{ cm}^3$  dichloromethane and (ii)  $0.75 \text{ cm}^3$  ( $11.92 \times 10^{-3} \text{ mol}$ ) CH<sub>3</sub>I and 0.25 cm<sup>3</sup> dichloromethane solution of complexes **1b-d** at 25 °C. The  $k_{obs}$  values at different concentrations are evaluated (Table 3) from the plot of  $ln(A_0/A_t)$  vs t (Fig. 3). The plots indicate, as the concentration of CH<sub>3</sub>I decreases, the time required to complete the OA reaction increases. The plots (not shown) of  $k_{obs}$  vs concentration of





**Figure 2.** Simultaneous decay (**■**) of terminal  $\nu$ (CO) bands in complexes **1b** (A), **1c** (B) and **1d** (C) and increase in intensity (**▲**) of acyl  $\nu$ (CO) bands of the corresponding acyl complexes **5b-d** during the OA reaction with CH<sub>3</sub>I against time.

CH<sub>3</sub>I shows a good linear fit, revealing that the reactions are of first order in CH<sub>3</sub>I as well as complexes **1b–d** concentrations. Therefore, the overall OA reaction is second order and  $k_{obs} = k_2$  [CH<sub>3</sub>I], where  $k_2$  is the second-order rate constant.

In order to compare the reactivity (OA) of CH<sub>3</sub>I, the OA reactions of neat C<sub>2</sub>H<sub>5</sub>I (1 cm<sup>3</sup>, 12.25 × 10<sup>-3</sup> mol) with complexes **1a–d** were also carried out. Applying the same conditions as above, similar types of kinetics were observed from the decay of lower  $\nu$ (CO) bands of the complexes



**Figure 3.** Plot of  $\ln(A_0/A_t)$  against time (min): OA of each complexes **1b** (A), **1c** (B) and **1d** (C) in ( $\blacklozenge$ ) 1, ( $\times$ ) 0.75 and ( $\blacktriangle$ ) 0.5 cm<sup>3</sup> of CH<sub>3</sub>I.

**1a–d** and an increase of intensity of the corresponding acyl complexes. It was found that OA reaction of the complexes with C<sub>2</sub>H<sub>5</sub>I is slower than with CH<sub>3</sub>I. The reaction follows the single-stage kinetics and  $k_{obs}$  values (Table 3) for the complexes **1a–d** were found to be  $2.07 \times 10^{-4}$ ,  $1.4 \times 10^{-4}$ ,  $9.33 \times 10^{-5}$  and  $8.50 \times 10^{-5} \text{ s}^{-1}$  which is about 10–100 times slower than the corresponding  $k_{obs}$  of the complexes with

|                                         | $k_{\rm obs}~({\rm s}^{-1})$                 | ([RI] mol)                                     |
|-----------------------------------------|----------------------------------------------|------------------------------------------------|
| Complexes                               | CH <sub>3</sub> I                            | $C_2H_5I$                                      |
| $[Rh(CO)Cl(P \cap Se)] (1a)$            | $2.467 \times 10^{-3a}$                      | $2.07 \times 10^{-4} (12.25 \times 10^{-3})$   |
| $[Rh(CO)_2Cl(P \sim Se)] (\mathbf{1b})$ | $1.23 	imes 10^{-3} \ (8 	imes 10^{-3})$     | $1.40 \times 10^{-4} \ (12.25 \times 10^{-3})$ |
|                                         | $1.78 	imes 10^{-3} (11.92 	imes 10^{-3})$   |                                                |
|                                         | $2.34 	imes 10^{-3} (16 	imes 10^{-3})$      |                                                |
| $[Rh(CO)_2Cl(P \sim Se)]$ (1c)          | $1.10 	imes 10^{-3} \ (8 	imes 10^{-3})$     | $9.33 \times 10^{-5} (12.25 \times 10^{-3})$   |
|                                         | $1.65 	imes 10^{-3} (11.92 	imes 10^{-3})$   |                                                |
|                                         | $2.30 	imes 10^{-3} (16 	imes 10^{-3})$      |                                                |
| $[Rh(CO)_2Cl(P \sim Se)] (1d)$          | $1.02 	imes 10^{-3} \ (8 	imes 10^{-3})$     | $8.50 \times 10^{-5} (12.25 \times 10^{-3})$   |
|                                         | $1.34 	imes 10^{-3} \ (11.92 	imes 10^{-3})$ |                                                |
|                                         | $1.67 	imes 10^{-3} \ (16 	imes 10^{-3})$    |                                                |

| Table 3. | $k_{\rm obs}$ | values | for the | OA r | eactions | of the | complexes | 6 1a-d | l with | CH <sub>3</sub> I | and | $C_2H_5$ | I |
|----------|---------------|--------|---------|------|----------|--------|-----------|--------|--------|-------------------|-----|----------|---|
|----------|---------------|--------|---------|------|----------|--------|-----------|--------|--------|-------------------|-----|----------|---|

<sup>a</sup> Our earlier report.<sup>35</sup>

CH<sub>3</sub>I. The trend of reactivity (OA) of  $C_2H_5I$  with complexes **1a–d** follows the order **1a** > **1b** > **1c** > **1d**, which was also observed in the case of CH<sub>3</sub>I reactivities.

### Catalytic activity of the complexes 1b-d for carbonylation of methanol

The results of carbonylation of methanol to acetic acid and its ester in the presence of the complexes **1b–d** as catalyst precursors are shown in Table 4. GC analyses of the products reveal that complexes **1b–d** respectively show 36.21, 35.90 and 35.54% total conversions of methanol, with the corresponding turnover numbers (TON) 812, 690 and 683. Under the same experimental conditions, the well-known catalyst precursor [Rh(CO)<sub>2</sub>I<sub>2</sub>]<sup>-</sup>, generated *in situ*<sup>48</sup> from added [Rh(CO)<sub>2</sub>Cl]<sub>2</sub> shows only 34.08% total conversion with TON 648. On the other hand, total conversions of 38.80% with TON 870 were reported under the same experimental conditions for the complex **1a** by our group.<sup>35</sup> Thus, the efficiency trend of the complexes follows the order **1a** > **1b** > **1c** > **1d** >

**Table 4.** Results of carbonylation of methanol in the presence of complexes **1a–d** as catalyst precursors at  $130 \pm 5$  °C and  $35 \pm 2$  bar CO pressure for 1 h

| Catalyst             | Acetic<br>acidª<br>(%) | Methyl<br>acetate <sup>a</sup><br>(%) | Total<br>conversion<br>(%) | TON <sup>b</sup> |
|----------------------|------------------------|---------------------------------------|----------------------------|------------------|
| $[Rh(CO)_2l_2]^{-c}$ | 3.34                   | 30.74                                 | 34.08                      | 648 <sup>d</sup> |
| 1a                   | 9.60                   | 29.20                                 | 38.80                      | 870 <sup>d</sup> |
| 1b                   | 8.16                   | 28.05                                 | 36.21                      | 812              |
| 1c                   | 4.26                   | 31.64                                 | 35.90                      | 690              |
| 1d                   | 4.22                   | 31.32                                 | 35.54                      | 683              |

<sup>a</sup> Yield of methyl acetate and acetic acid were obtained from GC analyses.

<sup>b</sup> TON = [amount of product (mol)]/[amount of catalyst (Rh mol)]. <sup>c</sup> Formed from added [Rh(CO)<sub>2</sub>Cl]<sub>2</sub> under catalytic condition.

<sup>d</sup> Our earlier report.<sup>35</sup>

Copyright © 2006 John Wiley & Sons, Ltd.

 $[Rh(CO)_2I_2]^-$ . Therefore, the advantage of the complexes **1a-d** as catalysts over the species  $[Rh(CO)_2I_2]^-$  is obvious. The observed trend of the complexes can be well explained on the basis of rate of OA reactions with CH<sub>3</sub>I. In carbonylation of methanol, the OA of CH<sub>3</sub>I is the rate-determining step, and the higher the rate of OA reaction, the higher is the catalytic activity. From the kinetic study of OA reaction of CH<sub>3</sub>I with complexes **1a-d**, it has been observed that the rate of OA reaction also follows the same order as mentioned above. Therefore, the described difference in reactivity is due to the observed difference in rate of OA reaction. The chelate complex 1a shows higher catalytic activity than the non-chelate complexes 1b-d and this higher activity may be due to higher electron density on the central metal atom gain by the chelate formation through Se donor of the ligand. On examining the catalytic reaction mixture by IR spectroscopy at different time intervals and at the end of the catalytic reaction, multiple v(CO) bands are obtained that match well with the  $\nu$ (CO) values of solution containing a mixture of the parent rhodium(I) carbonyl complexes 1b-d and rhodium(III) acyl complexes 5b-d. Thus, it may be inferred that the ligands remained bound to the metal center throughout the entire course of the catalytic reactions.

#### Acknowledgments

The authors are grateful to Dr P.G. Rao, Director, Regional Research Laboratory (CSIR), Jorhat, India, for his kind permission to publish the work. The authors thank Dr P.C. Borthakur, Head, Material Science Division, RRL, Jorhat, for his encouragement and support. The Department of Science and Technology (DST), New Delhi is acknowledged for the partial financial grant. The author PC thanks CSIR, New Delhi, for the award of Senior Research Fellowship (SRF).

#### REFERENCES

1. Milton HL, Wheatley MV, Slawin AMZ and Woollins JD. *Polyhedron* 2004; **23**: 3211.



- 2. Speiser F, Braunstein P and Saussine L. Acc. Chem. Res. 2005; 38: 784.
- 3. Braunstein P. Chem. Rev. 2006; 106: 134.
- 4. Braunstein P and Naud F. Angew. Chem. Int. Edn 2001; 40: 680.
- 5. Wegman RW, Abatjoglou AG and Harrison AM. J. Chem. Soc. Chem. Commun. 1987; 1891.
- 6. Gonsalvi L, Adams H, Sunley GJ, Ditzel E and Haynes A. J. Am. Chem. Soc. 2002; 24: 13597.
- 7. Blagborough TC, Davis R and Ivison P. J. Organomet. Chem. 1994; 467:85
- 8. Brassat I, Englert U, Keim W, Keitel DP, Killat S, Suranna GP and Wang R. Inorg. Chim. Acta 1998; 280: 150.
- 9. Higgins SJ, Taylor R and Shaw BL. J. Organometal. Chem. 1987; 325: 285.
- 10. Das P, Sharma M, Kumari N, Konwar D and Dutta DK. Appl. Organometal. Chem. 2002; 16: 302.
- 11. Berry DE, Browning J, Dixon KR and Hilts RW. Can. J. Chem. 1988; 66: 1272.
- 12. Baker MJ, Giles MF, Orpen AG, Taylor MJ and Watt RJ. J. Chem. Soc. Chem. Commun. 1995; 197.
- 13. Gonsalvi L, Adams H, Sunley GJ, Ditzel E and Haynes A. J. Am. Chem. Soc. 1999; 121: 11233.
- 14. Suranna GP, Mastrorilli P, Nobile CF and Keim W. Inorg. Chim. Acta 2000; 305: 151.
- 15. Valderrama M, Contreras R, Bascunan M and Alegria S. Polyhedron 1995; 14: 2239.
- 16. Lobana TS and Singh R. Trans. Met. Chem. 1995; 20: 501.
- 17. Lobana TS, Verma R, Singh A, Shikha M and Castineiras A. Polyhedron 2002; 21: 205.
- 18. Aladzheva IM, Bykhovskaya OV, Lobanov DI, Petrovskii PV, Antipin MY, Lysenko KA, Mastryukova TA and Kabachnik MI. Phosphorus Sulfur Silicon 1996; 111: 116.
- 19. Felicissimo MP, Batista AA, Ferreira AG, Ellena J and Castellano EE. Polyhedron 2005; 24: 1063.
- 20. Leung PH, Willis AC and Wild SB. Inorg. Chem. 1992; 31: 1406.
- 21. Morales DM, Morales SR, Dilworth JR, Pedrares AS and Zheng Y. Inorg. Chim. Acta 2002; 332: 101.
- 22. Evans DA, Campos KR, Tedrow JS, Michael FE and Gagne MR. J. Am. Chem. Soc. 2000; 122: 7905.
- 23. Bressan M, Bonuzzi C, Morandini F and Morvillo A. Inorg. Chim. Acta 1991; 182: 153.
- 24. Bhattacharyya P, Slawin AMZ, Williams DJ and Woollins JD. J. Chem. Soc. Dalton Trans. 1995; 3189.

- 25. Balakrishna MS, Klien R, Uhlenbrock S, Pinkerton AA and Cavell RG. Inorg. Chem. 1993; 32: 5676.
- 26. Aucott SM, Slawin AMZ and Woollins JD. Polyhedron 2003; 22: 361.
- 27. Chutia P, Sharma M, Das P, Kumari N, Woollins JD, Slawin AMZ and Dutta DK. Polyhedron 2003; 22: 2725.
- 28. Dutta DK, Chutia P, Woollins JD and Slawin AMZ. Inorg. Chim. Acta 2006; 359: 877.
- 29. Grim SO and Walton ED. Inorg. Chem. 1980; 19: 1982.
- 30. Cauzzi D, Graiff C, Lanfranchi M, Predieri G and Tiripicchio A. Inorg. Chim. Acta 1998; 273: 320.
- 31. Bond AM, Colton R and Panagiotidou P. Organometallics 1988; 7: 1767.
- 32. Dean PAW and Hughes MK. Can. J. Chem. 1980; 58: 180.
- 33. Colton R and Panagiotidou P. Aust. J. Chem. 1987; 40: 13.
- 34. Dean PAW. Can. J. Chem. 1979; 57: 754.
- 35. Dutta DK, Woollins JD, Slawin AMZ, Konwar D, Sharma M, Bhattacharyya P and Aucott SM. J. Organometal. Chem. 2006; 691: 1229
- 36. Wilson JM, Sunley GJ, Adams H and Haynes A. J. Organometal. Chem. 2005; 690: 6089.
- 37. Kumari N, Sharma M, Chutia P and Dutta DK. J. Mol. Catal. A: Chem. 2004; 222: 53.
- 38. Vogel AR. A Text Book of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, 3rd edn. Longman: London, 1962
- 39. McCleverty JA and Wilkinson G. Inorg. Synth. 1966; 8: 221.
- 40. Sharma M, Kumari N, Das P, Chutia P and Dutta DK. J. Mol. Catal. A: Chem. 2002; 188: 25.
- 41. Haynes A, Mann BE, Gulliver DJ, Morris GE and Maitlis PM. J. Am. Chem. Soc. 1991; 113: 8567.
- 42. Kumari N, Sharma M, Das P and Dutta DK. Appl. Organometal. Chem. 2002; 16: 258.
- 43. Fagnou K and Lautens M. Angew. Chem. Int. Edn 2002; 41: 26.
- 44. Haynes A, Maitlis PM, Stanbridge IA, Haak S, Pearson JM, Adams H and Bailey NA. Inorg. Chim. Acta 2004; 357: 3027.
- 45. Adams H, Bailey NA, Mann BE, Manuel CP, Spencer CM and Kent AG. J. Chem. Soc. Dalton Trans. 1988; 489.
- 46. Kent AG, Mann BE and Manuel CP. J. Chem. Soc. Chem. Commun. 1985: 728.
- 47. Braunstein P, Chauvin Y, Fischer J, Olivier H, Strohmann C and Toronto DV. New J. Chem. 2000; 24: 437.
- 48. Forster D. J. Am. Chem. Soc. 1976; 98: 846.