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Friedel-Crafts benzylation of benzene using Zn and Cd
ions exchanged clay composites
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Abstract

Metal ion-exchanged clay composites such as MII –Mont and MII –Mont (AT) where M = Zn and Cd, Mont = montmorillonite clay of the
types Mont1 (SWy-2) and Mont2 (Neelkanth), and AT = acid treated have been synthesized, characterized and evaluated as catalysts for Friedel-
Crafts reaction particularly for benzylation of benzene. XRD study reveals that, in general, the basal spacing (d ) increases as the interlayer
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ations of Na–Mont or H+–Mont are exchanged with Zn2+ or Cd2+ ions and interlamellar spacings are maintained in the range 3.9–5
.3–6.0Å, respectively, at room temperature. The basal spacing (d0 0 1) of Mont1 supported composites are higher than Mont2 and therefor
ubstantiate the advantage of the former over the latter in preparing metal ion-exchanged clay composites useful as solid acid cata
he initial benzylation reactions, Cd2+-exchanged composites, in general, show higher activity but in the long run Zn2+-exchanged clays exhib
igher catalytic activities. In general, acid treated metal ion-exchanged clay composites exhibit higher catalytic activity than non-ad
nes because the former show higher surface area as well as higher acid sites.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Different types of modified supported inorganic reagents
re rapidly emerging as new and environment friendly materi-
ls[1]. Attempts are being made to replace highly corrosive
F in olefin alkylation, anhydrous AlCl3 in Friedel-Crafts
lkylation, etc. by such supported solid acid catalysts. Re-
lacement of the exchangeable interlayer Na+ ions of mont-
orillonite (Mont) clay by high charge density cations such
s Al3+, Zn2+, Fe2+ leads to clay layers of high acidity and are
escribed as broad spectrum catalysts for organic synthesis

1,2]. Such clays at high temperature reduce to Lewis acid-
ty through the loss of interlayer water. It, therefore, appears
hat suitable supported metal ions on Mont may play key role
s solid acid catalysts in reactions like Friedel-Crafts alkyla-
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tions [3–6]. Treatment of clays with acid has been repo
to replace exchangeable cations with H+ ions and leachin
Al3+ out of both tetrahedral and octahedral sites but l
ing the SiO4 group largely intact[7]. Such acid treated cla
are therefore partially delaminated and exhibit higher su
area, pore volume and pore diameter but lower CEC va
than the parent clays[3,8–10]. The exchangeable cations
these materials play a key role in controlling surface ac
and catalytic activity. Presence of protons and coordinat
unsaturated cationic centers on the surface and interlam
spacing of the clay impart Brønsted and Lewis acidities

Replacement of environmentally unacceptable anhyd
AlCl3, an established catalyst for Friedel-Crafts alkylat
by supported AlCl3 on Mont K10 (an acid treated Mont) h
been claimed to be an efficient catalyst[11]. Another such
example is ‘Clayzic’ which exhibits both Brønsted and Le
surface acidities[3,12], which is prepared by deposition
ZnCl2 on Mont K10. Good conversion are also achie
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in Friedel-Crafts alkylation by using transition metal ion-
exchanged Mont K10[13,14].

The present work reports the preparation of metal ion-
exchanged clay composites like MII –Mont and MII –Mont
(AT) (where M = Zn, Cd; AT = acid treated) and their solid
acid catalytic activities towards Friedel-Crafts benzylation of
benzene. These metal ions exchanged clay composites have
been characterized by X-ray diffraction analysis, surface area
and acid sites determination.

2. Experimental

2.1. Materials and methods

Two Mont clays were chosen for studies: (1) bentonite
(SWy-2) from Crook County Wyoming USA (Mont1 here-
after) and (2) bentonite from Neelkanth Sodaclays and Pul-
verizers, Jodhpur, India (Mont2 hereafter). Clays contained
silica sand, iron oxide, etc. as impurities and were purified by
the sedimentation method[15] to collect the <2�m fraction.
The oxide compositions of the Mont1 and Mont2 determined
by weight chemical and flame photometric methods were
SiO2: 58.12 and 49.42; Al2O3: 18.93 and 20.02; Fe2O3: 4.63
and 7.49; MgO: 2.52 and 2.82; CaO: 1.12 and 0.69; LOI:
13.54 and 17.51; others (Na2O, K2O and TiO2) 1.14 and
2

nged
f ut
7 dis-
t ed
t EC)
o
b

2

us
m ride
( iod
o t salt
s ride
s solu-
t irred,
s oved
b ining
s illed
w t of
d
n
p
o

2

s
t xed

for 4 h. After cooling, the slurry was filtered under suction,
washed with distilled water and finally dialysed against dis-
tilled water till the conductivity of the dialysate approached
that of distilled water and showed negative test for Cl− with
silver nitrate. The mass was then dried at 50± 5◦C in air
oven to obtain the solid product. The CEC of the acid treated
clays H+–Mont were found to be 35 and 70 mequiv./100 g
clay for Mont1 and Mont2 clays, respectively.

2.4. Synthesis of MII –Mont (AT)

A volume of 100 ml of 1% slurry of H+–Mont in aqueous
medium was treated with equal volume of 2 M metal chlo-
ride (MCl2) solution (where M = Zn, Cd) and stirred for a
period of 12 h and then set aside for settling. The supernatant
salt solution was removed and again added 100 ml of 2 M
metal chloride solution. Stirring and removal of supernatant
solution was repeated and then distilled water was added,
stirred, settled and decanted off. The large excess of salt was
removed by this process. When the clay stopped settling, the
remaining salt was removed by subjecting the slurry to dialy-
sis against distilled water till the conductivity of the dialysate
approached that of distilled water and showed negative test
for Cl− ion with silver nitrate. The metal ion-exchanged acid
treated Mont{MII –Mont (AT)} so produced was then dried
at 50± 5◦C in an air oven to obtain the solid products.
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The clays were converted to the homoionic Na-excha

orm Na–Mont by stirring in 2 M NaCl solution for abo
8 h, which was washed and finally dialyzed against

illed water until conductivity of the dialyzate approach
hat of distilled water. The cation exchange capacities (C
f Mont1 and Mont2 clay as determined[16] were found to
e 80 and 114 mequiv./100 g of clay, respectively.

.2. Preparation of MII –Mont

A volume of 100 ml of 1% slurry of Na–Mont in aqueo
edium was treated with equal volume of 2 M metal chlo

MCl2) solution (where M = Zn, Cd) and stirred for a per
f 12 h and then set aside for settling. The supernatan
olution was removed and again 100 ml of 2 M metal chlo
olution was added. Stirring and removal of supernatant
ion was repeated and then distilled water was added, st
ettled and decanted off. The large excess of salt was rem
y this process. When the clay stopped settling, the rema
alt was removed by dialysis of the product against dist
ater till the conductivity of the dialysate approached tha
istilled water and showed negative test for Cl− with silver
itrate. The metal cation-exchanged Mont (MII –Mont) com-
osites thus obtained were dried at 50± 5◦C in air oven to
btain the solid products.

.3. Acid treatment of Mont

An amount of 3 g of dry <2�m fraction clay particles wa
reated with 100 ml of 0.7 M HCl and the slurry was reflu
.5. Basal spacing (d001) determination by XRD
echnique

Thin layered (oriented) samples were prepared on
lides by standard technique[17,18]for basal spacing (d0 0 1)
etermination by XRD. Diffraction patterns were taken in
ange 2θ = 2–60◦ at a rate of 6◦/min (X-ray diffractomete
EOL, JDX-11p 3A, Japan).

.6. Acid sites determination

The catalysts were degassed at 150◦C under flowing nitro
en for 2 h. Ammonia gas was then purged at 100◦C for 2 h.
he amount of acid sites were determined from the de

ion of chemisorbed ammonia by thermogravimetric ana
TA instruments, Model STD 2960 simultaneous DTA-TG
n the temperature range 150–650◦C.

.7. Surface area measurement

Surface area of the clay composites were determined b2
dsorption at−196◦C and application of the BET equatio
rior to adsorption, clay samples were degassed at 1◦C

or about 2 h. The adsorption and desorption isotherm
ecorded on a Smart Sorb 91 Surface Area Analyser.

.8. Procedure for benzylation of benzene

The MII –Mont, H+–Mont and MII –Mont (AT) composite
or both the clays Mont1 and Mont2 were used as Friede
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Crafts catalysts, particularly for benzylation of benzene. Cat-
alysts were activated under dry air at 150◦C for 3 h. A typical
experiment may be described as mixing 8 ml of benzene and
0.24 ml of benzyl chloride in a round bottom flask and stirred
at room temperature with the catalyst (containing 0.105 mmol
cation). The product, diphenylmethane, was collected at dif-
ferent time intervals and analysed by GC (Chemito GC,
Model 8510, FID).

3. Results and discussion

3.1. X-ray diffraction studies

The XRD patterns along with basal spacing (d0 0 1)
of Na–Mont1, Na–Mont2, ZnII –Mont1, ZnII –Mont2,
CdII –Mont1 and CdII –Mont2 are shown inFig. 1. The basal
spacing (d0 0 1) of Na–Mont1(12.4Å) shows an increase
when the interlayer cations are exchanged with Zn2+ and
Cd2+ ions and the values are 14.6 and 14.9Å, respectively.
Similarly, basal spacing (d0 0 1) values of ZnII –Mont2 and
CdII –Mont2 are 13.7 and 13.5̊A, respectively, as com-
pared to that of Na–Mont2 (12.5Å). Thus, it reveals that
Zn2+/Cd2+ exchanged clays maintain interlamellar spacing
in the range 3.9–5.3̊A at room temperature and in general
M cing
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Fig. 2. XRD patterns and basal spacing (d0 0 1) of H+–Mont1 (a), ZnII –Mont1
(AT) (b), CdII –Mont1 (AT) (c), H+–Mont2 (d), ZnII –Mont2 (AT) (e) and
CdII –Mont2 (AT) (f).

shown in Fig. 2. The basal spacing (d0 0 1) of H+–Mont1
and H+–Mont2 are 12.4 and 12.2̊A, respectively, imply-
ing that the laminar structures of the clays are retained
to a significant degree even after acid treatment.Fig. 2
shows that the basal spacing (d0 0 1) of Zn2+-exchanged acid
treated Mont clays are 14.7 and 13.9Å for ZnII –Mont1
(AT) and ZnII –Mont2 (AT), respectively, while the basal
spacing (d0 0 1) of Cd2+-exchanged acid treated Mont clays,
i.e. CdII –Mont1 (AT) and CdII –Mont2 (AT) show higher
values at 15.6 and 14.0̊A, respectively. Thus it reveals
that the acid treated metal ion-exchanged clay composites
maintain the layered structures having interlayer spacing
of about 4.3–6.0̊A at room temperature. Such composites
are found to be stable up to about 200◦C. These layered
composites are likely to act as size/shape selective cata-
lysts.

3.2. Acid site and surface area data

The amount of acid sites (Brønsted and Lewis) were de-
termined from the desorption of ammonia in the temper-
ature range 150–650◦C of ammonia treated highly active
Zn2+containing composites are shown inTable 1. It reveals
from Table 1that the amount of acid sites as well as surface
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ont1 supported composites show higher basal spa
d0 0 1) as compared to Mont2 supported composites whi
ubstantiate the advantage of Mont1 over Mont2 as catalys
upport.

The XRD patterns of H+–Mont1, H+–Mont2, ZnII –Mont1
AT), ZnII –Mont2 (AT), and CdII –Mont1 (AT) and
dII –Mont2 (AT) along with their basal spacing (d0 0 1) are

ig. 1. XRD patterns and basal spacing (d0 0 1) of Na–Mont1 (a), ZnII –Mont1
b), CdII –Mont1 (c), Na–Mont2 (d), ZnII –Mont2 (e) and CdII –Mont2 (f).
able 1
cid sites and surface area of different ZnII containing catalysts

atalyst Amount of acid sites (mmol/g) Surface area (m2/g)

nII –Mont1 1.299 72.89
nII –Mont1 (AT) 1.612 93.91
nII –Mont2 1.176 40.55
nII –Mont2 (AT) 1.415 54.26
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area of acid treated metal ion-exchanged clay composites are
higher than non-acid treated ones.

3.3. Benzylation of benzene with benzyl chloride

Benzylation of benzene to produce dephenylmethane
(Eq. (1)) in presence of different solid acid catalysts
like ZnII –Mont1, ZnII –Mont2, CdII –Mont1, CdII –Mont2,
H+–Mont1, H+–Mont2, ZnII –Mont1 (AT), ZnII –Mont2 (AT),
CdII –Mont1 (AT) and CdII –Mont2 (AT) at room temperature
are studied in details. The major product, diphenylmethane,

is collected at different time intervals and analyzed by gas liq-
uid chromatography. Different yield percentages of diphenyl-
methane from benzylation of benzene against time in pres-
ence of different metal ion-exchanged clay catalysts at room
temperature are shown inFig. 3. ZnII –Mont1 and CdII –Mont1
show initially 0.3 and 7.2% yields of diphenylmethane, re-
spectively, up to a reaction period of 4 h, which enhance
to 5.1 and 12.3%, respectively, during the period of 10 h,
but on increasing the reaction time (24 h) a reverse trend of
y n fur-
t sites
Z ds
9 oth
t . In a
s
0 ively,

Fig. 3. The percentage yield of diphenylmethane in benzylation of benzene
at room temperature against reaction time in presence of different metal
ion-exchanged Mont catalysts.

in a reaction period of 4 h while during 10 h of reaction time,
a reverse trend of yields, i.e. 4.9 and 2.4% are observed. On
further increasing the reaction periods up to 24, 48 and 72 h
the corresponding yields obtained are 54.6 and 7.4, 99.9 and
14.4, and 99.9 and 31.7%.

The conversion to diphenylmethane in presence of
different acid treated and metal ion-exchanged clay catalysts
at room temperature against time of reaction are shown in
Fig. 4. The yields against H+–Mont1, ZnII –Mont1 (AT) and
CdII –Mont1 (AT) catalysts are 1.2, 11.9 and 22.1%, respec-
tively, within a period of 4 h, while in 10 h reaction time,
a reverse trend between ZnII –Mont1 (AT) and CdII –Mont1
(AT) is observed and the corresponding conversions are 5.3,
92.9 and 32.8% which enhance to 31.1, 99.9 and 46.7%,

F zene a trel
i

ields, i.e. 63.5 and 28.6%, respectively, are observed. O
her increasing the reaction time up to 48 h, the compo
nII –Mont1 and CdII –Mont1 show the corresponding yiel
9.8 and 94.3% and finally within 72 h of reaction time b

he catalysts produce about 99.9% of diphenylmethane
imilar manner, ZnII –Mont2 and CdII –Mont2 show initially
.2 and 1.0% conversion to diphenylmethane, respect

ig. 4. The percentage yield of diphenylmethane in benzylation of ben
on-exchanged Mont catalysts.
t room temperature against reaction time in presence of different acidated meta
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respectively, during 24 h. During 48 h. reaction period, the
corresponding conversions are 95.4, 99.9 and 94.9% and
finally in 72 h, the yields of diphenylmethane are almost
100% irrespective of any catalysts. Similarly the yields of
diphenylmethane (Fig. 4) against H+–Mont2, ZnII –Mont2
(AT), and CdII –Mont2 (AT) catalysts are 0, 0.7 and 4.9%,
respectively, within a period of 4 h, while in 10 h the corre-
sponding yields are 0, 5.7 and 8.9%. However, during 24 h
reaction time the corresponding yields of diphenylmethane
enhance to 3.3, 99.8 and 21.3% indicating a reverse trend of
catalytic activity between ZnII –Mont2 (AT) and CdII –Mont2
(AT) similar to that observed earlier. During 48 h reaction
time, the corresponding yields are 92.3, 99.9 and 99.9
and finally, almost 100% conversions are found in 72 h.
The catalysts are reusable. After catalytic experiments, the
recovered catalysts after activation are found to show almost
the same catalytic activities.

It is observed from the above that Cd2+-exchanged
clay composites exhibit higher initial activity than Zn2+-
exchanged composites but during the later period of the re-
action Zn2+-exchanged clay composites proved themselves
to be better catalysts. The higher initial catalytic activity of
Cd2+-composites over Zn2+-composites may be due to higher
polarizing power and ease of formation of hexacoordinated
sphere[19] of Cd2+ over Zn2+ but a reverse trend of cat-
a part
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� ucts
a
i r
s tes
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