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Summary

Candida utilis was grown on a pineapple cannery effluent in a chemostat at dilution rates ranging between 0.05
and 0.65h™' to establish optimal conditions for biomass production and chemical oxygen demand (COD)
reduction. Sucrose, fructose and glucose were the main sugars in the effluent. Maximum value for cell yield
coefficient and productivity were (0.686, g,/g,) and (2.96, g,/I/h) at a dilution rate of 0.425 and 0.475 h™',
respectively, while maximum COD reduction (98%) was attained at a dilution rate of 0.1 h™'. The maintenance
coefficient attained a value of (0.093, g¢/g,./h). An increase in dilution rate produced a higher protein content of

the biomass.

Introduction

Recently increasing attention has been given to the
conversion of fruit and vegetable processing wastes into
single cell protein (SCP) (Litchfield 1983). The recovery
of a valuable by-products with simultaneous reduction
of the organic load are the chief economic advantages of
such processes. Batch culture study with Candida utilis
gave good yield and reduced the chemical oxygen
demand (COD) (Nigam 1998). The purpose of this
study was to establish optimal conditions for the
cultivation of C. utilis and COD reduction using
chemostat culture.

Materials and Methods
Microorganism and culture conditions

Candida utilis NRRL Y-900 was maintained on yeast
extract (0.5%), tryptic soy agar (4%) (Difco). A loopful
of culture was transferred to 100 ml feed medium and
grown at (30 °C, 200 rev/min) before it was used to
inoculate the fermentor.

Substrate ( Raw material))
The collection of cannery effluent and its processing

was done by the methods described earlier (Nigam,
1998).

Feed medium

Effluent samples were supplemented with (g/): (NHy),
HPO,, 4; MgSO, - 7H,0, 0.6. Antifoam, 0.1 ml (DOW
Corning, FG-10) was added. pH was adjusted to 4.5.

Fermentor and continuous cultivation

Cultivation was carried out in a 5-L Microferm fermen-
tor (NBS Co. Inc., N.J., USA) with a 21 working
volume, equipped with a foam, temperature, pH and
dissolved oxygen (DO) control systems at a stirring
speed of 700 rev/min, an air flow rate of 4 v/v/m, and a
temperature of 30 °C. The fermentor was inoculated
with 100 ml culture broth and allowed to grow before
the medium pump was started. Dilution rates ranging
between 0.05 and 0.65 h™' were evaluated. The culture
was assumed to be in steady-state when several deter-
mination of optical density (OD) gave similar values,
measured at time intervals of 1 h. Each dilution rate was
examined with five exchanges of fermentor volume.
Dissolved oxygen tension (DOT) in chemostat was never
less than 60% of air saturation.

Analytical methods

Samples withdrawn at steady-state were centrifuged
(10,000 x g, 15 min) and analysed for Kjeldahl nitrogen,
COD, total solids and lipid by the standard methods.
Total carbohydrate and reducing sugars were analysed
by the anthrone and Somogyi methods, respectively.
Individual sugars were analysed by high-performance
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liquid chromatography (HPLC) (Van Zyl et al. 1988).
Trehalose and glycogen (Grba er al. 1975), Lowry
protein, phosphorus, DNA and RNA (Herbert et al.
1971), and amino acid composition (Simpson et al.
1976) of dry cells was determined. The cell pellet was
washed and cell mass was determined after drying at
105 °C to constant weight.

Results and Discussion

Candida utilis can utilize various carbon sources for the
production of SCP. Pineapple cannery effluent contains
a high amount of carbohydrates (13.8-16.2 g/I) and its
reducing sugar content varies (10.2-12.6 g/l), with a
COD value of 15.8-16.6 g/1. This effluent therefore is a
cheap and suitable waste material for single cell protein
production.

Cultivation was carried out at dilution rates ranging
from 0.05 to 0.65 h™'. The maximum value for cell yield
(0.686, g,./g) and productivity (2.96, g./l/h) were
achieved at a dilution rate of 0.425 and 0.475 h™', res-
pectively which are comparable to published data
(Blanch & Einsele 1973). The productivity and yield
increased (4.9- and 1.81-fold), respectively over batch
culture (Nigam 1998). The maximum values for sugar
utilization and COD reduction were 89.6 and 98% at a
dilution rate of 0.35 and 0.1 h™', respectively.

The protein content in biomass increased from 48.6 to
56.8% with increasing dilution rates (0.05 to 0.65 h™")
(Fig. 1). This is probably due to an increase in dilution
rate which provides larger amounts of nutrients and
cells assimilate a greater quantity of nitrogen from the
medium, and thereby synthesize a larger quantity of
protein. The increase in protein content was propor-
tional to the phosphorus content of the biomass. This is
probably due to maintenance of constant nitrogen:phos-
phorus ratio which is characteristic of Saccharomyces
cerevisiae (White 1954). The effect of growth rate on
protein content has been studied widely and it has been
found that protein content increases as the dilution rate
increases (Paredes-Lopez et al. 1976). The decrease in
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Figure 1. Effect of dilution rate on biomass composition of Candida
utilis growing in chemostat culture. Results are expressed in dry weight
basis. The pH was controlled at 4.5 £ 0.1, temperature at 30 °C,
and agitation speed at 700 rev/min. (@): trehalose; (H): glycogen;
(A): phosphorus; (A): protein.
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trehalose and glycogen content were observed with
increasing dilution rate (Figure 1), which are in agree-
ment with published data (Kuenzi & Fiechter 1972). The
difference in carbohydrate contents were attributed to
the media composition, aeration, strain, specificity and
growth phase (Polakis & Bartley 1966), though not
much attention was paid to the relation between growth
kinetics and reserve carbohydrate synthesis. The glyco-
gen and trehalose are known to serve as endogenous
carbon and energy source for budding, irrespective of
generation time (Kuenzi & Fiechter 1969). Under excess
exogenous substrate the budding proceeds without
degradation of endogenous carbohydrates.

The main constituent of yeast SCP is protein (55.3%),
which is quite high and suggests that this yeast could be
a suitable cattle feed supplement. Nucleic acid content
(7.9%) was comparable to the reported values for
another strain of C. utilis (Alroy & Tannenbaum 1973).
The amino acid composition compares favorably in
quality to soybean protein concentrate (Nigam 1998).

The maintenance coefficient (m) was determined from
the plot of specific rate of sugar uptake (q,, gs/gx/h) and
dilution rate (D, h™"), which gives a straight line with a
slope 1/Yy;s and intercept m (plot not shown here),
which shows that this relationship was valid only up to
dilution rate of 0.45h™'. The value of maintenance
coefficient (0.093, g,/g./h) is comparable to published
data (Abbott & Clamen 1973; Paredes-Lopez et al.
1976). From an economic point of view, it is important
to use microorganisms having a low maintenance
coefficient for biomass production.

The selection of a dilution rate will depend upon the
purpose for which the effluent used. For maximum
productivity, a dilution rate (0.475h™') was found
suitable. At this dilution rate, COD reduction was
78%. If the objective is effective COD reduction, a
dilution rate of 0.1 h™" should be suitable at which COD
reduction is 98%. An optimum for effective biomass
cultivation and COD reduction would be a dilution rate
of 0.425 h™" where cell yield and productivity are (0.686,
g«/gs) and (2.82, g,/1/h) and COD reduction is (85%).

Further studies will investigate the problems associ-
ated with achieving higher productivity and high cell
density for economic yeast production.
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