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The attenuation of seismic waves is one of the basic 
physical parameters used in seismological studies, 
which is closely related to the seismicity and tectonic 
activity of a particular area. In the present study,  
attenuation properties of the crust beneath the Chedrang 
Fault and its vicinity, the rupture area of the great  
Assam earthquake of 12 June 1897 (M = 8.7) are studied 
using waveforms recorded by a local seismic network 
composed of five stations. In total 20 local earth-
quakes have been analysed to estimate (i) coda wave 
attenuation quality factor (Qc) applying single scatter-
ing model, (ii) total attenuation quality factor (Qd) 
from direct S-wave applying spectral ratio method and 
(iii) intrinsic and scattering attenuation quality factors 
(Qi and Qs) following the Wennerberg’s approach. 
Coda Q (Qc) values are obtained using different coda 
window lengths (20, 30 and 40 s) for frequency bands 
centred at 1, 1.5, 2, 3, 4, 6, 8, 12, 16 and 18 Hz. This 
study indicates that Qc increases with increasing lapse 
time and that Qc is frequency dependent following  
the attenuation–frequency relation Qc(20) = 36.29 ± 
1.18f 1.45 ± 0.09, Qc(30) = 69.92 ± 1.11f 1.23 ± 0.06 and Qc(40) = 
117.08 ± 1.08f 1.07 ± 0.05 for 20, 30 and 40 s respectively. 
This behaviour is usually correlated to the presence of 
heterogeneity in the crust and to the degree of tectonic 
complexity underneath the study area. The Q–

c
1 values 

for this area follow a substantially similar trend of Q–
c
1 

decay with frequency as the other tectonically active 
regions of the world. 
 Finally, from the separation of Qs and Qi values, it is 
observed that the study area can be characterized by a 
low scattering attenuation (small scattering Q inverse, 
Q–

s
1) and by a relatively high intrinsic attenuation 

(high intrinsic Q inverse, Q–
i
1). 

Keywords: Chedrang Fault, coda waves, frequency  
dependence, intrinsic attenuation seismic waves, quality 
factor. 

THE Chedrang Fault and its vicinity bounded by lat. 25°–
26.4°N and long. 90°–91.8°E belongs to the western part 
of Shillong Plateau. It covers much of the maximum  

intensity (XII) zone of the great Assam earthquake of 12 
June 1897 (ref. 1). This earthquake is a prominent among 
the great earthquakes of the world because of the large 
area over which it caused damage, liquefaction and land-
slides2. The earthquake almost totally destroyed settle-
ments and small towns on the western part of the plateau 
and caused heavy damage in the surrounding areas mainly 
due to the extensive liquefaction to the ground. A rela-
tively high level of microearthquake activity is still  
observed in the region3–6. 
 Earthquake damage is primarily caused by seismic 
waves and shaking is heavily influenced by the manner in 
which seismic waves propagate through complex geo-
logical structures7. When seismic waves propagate 
through the earth, the wave amplitude decays with travel 
distance defining attenuation characteristics of the media. 
The knowledge of seismic wave attenuation in a given 
region is necessary to obtain information on earthquake 
source parameter and also for the assessment of seismic 
hazard in a region8–10. The attenuation of high frequency 
seismic wave is expressed as an inverse of quality factor 
Q (ref. 11), i.e. Q–1 and it is a useful tool to study the  
attenuation properties of the media towards understanding 
the physical laws related to seismic wave propagation. 
Seismic wave attenuation described by quality factor Q is 
a complex mechanism. The main contributing factors  
towards Q are intrinsic attenuation (Q–

i
1) due to medium 

anelasticity and scattering attenuation (Q–
s
1) associated 

with inhomogeneities. Quantitative contribution of these 
factors is important for correct geological and tectonic  
interpretation7,12–21. 
 The main objective of this study is to obtain the  
attenuation properties of the crust beneath the Chedrang 
Valley area of the active Shillong Plateau by using local 
earthquakes and to ascertain the estimates of the quality 
factor of direct S-wave (Qd) and coda wave (Qc). Finally, 
the intrinsic attenuation (Q–

i
1) and scattering attenuation 

(Q–
s
1) are separated. 

 The coda wave attenuation quality factor, Qc, is esti-
mated applying single scattering model of Aki22, modi-
fied by Aki and Chouet23 and Sato24. In this method, coda
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Figure 1. a, Tectonic map of the study area with epicentral distribution of 20 events (filled circles) recorded at five stations (triangles) used for 
this analysis. b, Close view of Chedrang Fault area with rivers and canals. 
 
 
waves of local earthquakes are considered as backscat-
tered S to S-waves25 and are generated when S-wave  
encounters the different heterogeneities present in ran-
domly but uniformly in the earth’s crust. This method has 
been widely used because of its simplicity and ease of 
application to get estimates of local and regional Qc (refs 
10 and 26–32). Qc has been extensively estimated in many 
regions of the world and it has proven to be an extremely 
sensitive parameter of the geological environment33. 
 In order to estimate the total quality factor from direct 
S-wave (Qd), the spectral ratio methods by Tsujiura, and 
Frankel34 and Wennerberg35 are used. These methods 
provide the most direct approach to measure the energy 
loss in a seismic signal. 
 In this study, the intrinsic (Q–

i
1) and scattering (Q–

s
1)  

attenuations are estimated using Qc and Qd values follow-
ing Wennerberg36 for Chedrang Valley and its vicinity in 
the north-eastern region. The results of this study are 
highlighted here. 

Tectonic settings 

Tectonically, Chedrang Valley and its vicinity (Figure 
1 a) belong to a highly complex zone, which is a compo-
nent of the western part of Shillong Plateau surrounded 
by Main Boundary Thrust (MBT) to the north and thick 
tertiary sediment cover to the south37. Geologically, Shil-
long Plateau has evolved during the Mesozoic to Tertiary 
times with an average elevation of about 1 km. Dauki 
Fault (DF) is a major fault in the region, where 1000 m 
south facing escarpment of Bengal basin exists. The 

northern side is bordered by the Brahmaputra Valley. The 
western side is characterized by an N–S trending Dhubri 
Fault (DhF), which separates Garo Hills (western Shil-
long Massif) from the Indian subcontinent that separates 
the ancient continental crust of the Indian Shield from the 
cretaceous ocean floor. Apart from these, tectonics of this 
region is influenced by several faults, viz. Chedrang, 
Dudhnoi, Samin and Dapsi faults oriented NW–SE, N–S, 
NW–SE and E–W respectively1,37,38. Chedrang Fault is 
oriented along Chedrang River and joins the Krishnai 
River, a tributary of the Brahmaputra river (Figure 1 b). 
The old course of the Krishnai River (presently called as 
‘Mora Krishnai’ in local language i.e. dead Krishnai) 
prior to the 1897 earthquake lies towards western side of 
the present course1. At the offset zone of the Krishnai 
river, a village named ‘Jira’ was converted into a lake 
during the 1897 Great Assam Earthquake. The lake (the 
old course of river Krishnai) is 1.5 km away from the 
confluence of the Chedrang and Krishnai rivers. The up-
liftment took place along the eastern side of the Chedrang 
Fault passing through the village, resulting in the forma-
tion of the lake. The fault appears to be an expression of 
the fracture close to the Chedrang River. Oldham1  
observed an 11 m co-seismic slip down to the west of  
location of the Chedrang Fault. Formation of the lake 
near Jhira village is an indication of the slip. A recent  
palaeoseismic study39 from fissures and sand blown struc-
tures in the region identifies northern boundary fault as a 
major seismic source, now termed as Brahmaputra Fault.  
Besides, Angelier and Baruah40 tried to reconstruct the 
stress regimes with a stress analysis of focal mechanism
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Table 1. Hypocentral parameters of the events used in the study 

 Origin time Location 
 

Date h min s Latitude (°N) Longitude (°E) Focal depth (km) Magnitude (MDA) 
 

19-11-2001 12 16 43.43 26.03 90.82 27 3.8 
25-11-2001 18 3 55.08 25.98 91.37 12 3.6 
08-12-2001 22 8 57.99 26.21 91.10 12 3.4 
12-12-2001 23 6 8.21 25.14 91.20 14 3.6 
20-08-2003 19 28 22.20 25.50 91.05 11 1.8 
20-08-2003 11 52 26.00 25.67 90.05 13 2.5 
23-08-2003 00 57 47.20 25.61 90.84 14 2.7 
23-08-2003 11 35 33.70 26.28 90.54 9 2.0 
29-09-2003 21 15 27.41 25.62 91.04 21 1.5 
30-09-2003 12 36 40.30 25.66 90.09 18 2.1 
30-09-2003 18 14 18.24 25.24 90.17 24 2.7 
01-10-2003 18 51 24.20 26.39 90.33 23 2.5 
02-10-2003 17 37 38.29 25.97 90.19 8 1.8 
03-10-2003 07 30 43.90 26.08 90.59 6 1.4 
04-10-2003 03 48 24.29 25.72 90.39 15 1.8 
04-10-2003 15 18 15.60 25.23 90.01 25 2.3 
05-10-2003 21 02 55.00 25.78 90.68 17 1.4 
08-10-2003 16 53 42.85 25.59 90.47 20 2.1 
13-10-2003 11 19 33.36 26.26 90.15 16 2.0 
19-10-2003 18 50 46.14 26.07 90.97 10 1.4 

 
 
solutions of earthquakes to clarify the tectonic interaction 
and the underlying dynamics. 

Data 

We analysed 20 local earthquakes (Table 1) recorded dur-
ing 2001 and 2003 by the local broadband seismic net-
work. The network is operated by the North–East 
Institute of Science and Technology (formerly Regional 
Research Laboratory), Jorhat; National Geophysical  
Research Institute, Hyderabad (NGRI-Hyd) and Indian 
Meteorological Department, Shillong (IMD) (Figure 1 a). 
All the events are of the magnitude range 1.4–3.8 and are 
recorded in a epicentral distance of less than 100 km with 
shallow depth 6–27 km. The individual stations are 
equipped with Gurlap CMG-3ESP/CMG-3T sensors and 
high dynamic range 24 bit, REFTEK-72A series data  
acquisition system. All the stations are GPS time syn-
chronized and the sampling rate is fixed at 100 samples 
per second. The parameters of the seismic stations (name, 
station code and location) are listed in Table 2. Only 
waveforms with high signal-to-noise ratio are selected 
eliminating clipped signals with electronic spikes. Before 
analysis, the seismograms are corrected for instrument re-
sponse of respective recording stations. The hypocentral 
parameters, viz. origin time, latitude, longitude, focal 
depth and magnitude of the events have been computed 
using Hypocenter Location Program of Lienert et al.41 
with an average root mean square (rms) 0.03 s, epicentre 
and depth error < 1 km, based on the crustal velocity 
model of Mukhopadhyay et al.42. The epicentral locations 
of these events are shown in Figure 1. 

Method and data analysis 

Estimation of Qc 

Following Aki and Chouet23 and Sato24, the rms of coda 
wave amplitudes A( f, t) in a seismogram for central  
frequency f over a narrow band width signal and lapse 
time, t measured from origin time of the earthquake can 
be expressed as: 
 
 c( , ) ( ) ( , ) exp( / ),A f t C f K r x ft Qπ= −  (1) 
 
where Qc is the quality factor of coda wave, C( f ) takes 
into account the terms of source and site amplification 
and K(r, x) is a function of station–source distance (r) and 
defined as: 
 
 . .( , ) 1/ 1/ ln[( 1) /( 1)],K r x r x x x= + −  (2) 
 
where t/ts = x (ts is the travel time of S-wave). Lapse time 
is taken to be the average time of beginning of a coda 
window as measured from the origin time plus half the 
window length, as specified in Gusev43. 
 Taking natural logarithm of eq. (1) and rearranging the 
terms yields: 
 
 cln[ ( , )/ ( , )] ln ( ) / .A f t K r x C f ft Qπ= −  (3) 
 
For narrow bandpass filtered seismogram, C( f ) is con-
stant. Therefore, from the slope of linear eq. (3) between 
ln[A( f, t)/K(r, x)] and t, the estimation of Qc can be made 
as a function of frequency. The slope of the linear fit is  
–π f /Qc. 
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Table 2. Parameters of seismological stations (e.g. name, code, their location and elevation) used for  
 the present study 

 Location 
 

Station Station code Latitude (°N) Longitude (°E) Elevation (m) 
 

Gauhati University GAU 26.152 91.667 69 
Jogighopa JPA 26.239 90.575 42 
Mendipather MND 25.924 90.676 40 
Nangalbibra NGL 25.472 90.702 330 
Shillong  SHL 25.566 91.859 1590 

 
 
Table 3. Parameters of bandpass filter showing central frequencies  
 with respective low and high cut-off frequencies 

Low cut-off (Hz) Central frequency (Hz) High cut-off (Hz) 
 

0.67 1.0 1.33 
1.00 1.5 2.00 
1.33 2.0 2.67 
2.00 3.0 4.00 
2.67 4.0 5.33 
4.00 6.0 8.00 
5.33 8.0 10.67 
8.00 12.0 16.00 
10.67 16.0 21.33 
12.00 18.0 24.00 

 
 

 
 

Figure 2. A vertical component seismogram recorded by MND–
Mendipather Seismic Station. Selection of different coda window 
length is also shown. 
 
 
 For the estimation of Qc values at different central fre-
quencies ( fc), the seismograms are filtered using Butter-
worth bandpass filter of eight poles44. Ten frequency 
bands (bandwidth 0.67 fc) are used for this purpose. The 
filter parameters are listed in Table 3. Coda window in 
each seismogram is considered after the time duration 2ts, 
where ts is the travel time of direct S-wave45. An example 
showing different coda window length considered for 

analysis in a vertical component seismogram recorded by 
Mendipather (MND) Seismic Station is shown in Figure 
2. The coda waves for all the filtered seismograms are 
smoothed calculating rms values of amplitudes of the fil-
tered seismograms in a time window of 5.12 s for lower 
(1 and 1.5 Hz) and 2.56 s for higher (3–18 Hz) frequency 
bands with a sliding window along the coda in steps of 
half of the coda window length, i.e. 2.56 s and 1.28 s re-
spectively. Once the set of A(r, ω, t)/K(r, x) and the coda 
intervals t are obtained, then using eq. (3) we can find out 
Qc values from the slope of the linear fit. 

Estimation of Qd 

Qd is estimated using the spectral ratio method34,35. In this 
method, the spectral amplitude of a body wave A( f ) at 
frequency f is related to travel time t, source receiver dis-
tance r and quality factor Qd by 
 

 0 d( ) ( ) exp( / )
( ) ,

A f R f ft Q
A f

r
π−⎡ ⎤∝ ⎢ ⎥⎣ ⎦

 (4) 

 
where A0( f ) is the spectral amplitudes at the source, R( f ) 
the response function of the site to the incoming seismic 
radiation. For amplitudes at two different frequencies f1 
and f2, the natural logarithm of their amplitude ratio is 
given by: 
 
 1 2 0 1 0 2ln[ ( ) / ( )] ln[ ( ) / ( )]A f A f A f A f=  

  + 
1 2 1 2 dln[ ( ) / ( )] [ ( ) / ].R f R f f f t Qπ− −  (5) 

 
If A0(f1)/A0( f2) and R(f1)/R( f2) are constant for all events 
under study and independent of travel time, then eq. (5) is 
a straight line with the slope –π( f1 – f2)/Qd. From this 
slope, Qd can easily be calculated with known values of f1 
and f2. 
 Attenuation quality factor of direct S-wave (Qd) is 
computed for all the events (Table 1) using the spectral 
ratio method24,46. In this study, f1 is chosen at 1 Hz and 
f2 = 1.5, 2, 3, 4, 6, 8, 12, 16 and 18 Hz respectively. The 
logarithm of spectral amplitude ratios, [A( f1)/A( f2)] at 
different frequencies are plotted against travel time of  
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S-wave for all the events, the slope of which gives Qd at 
each value of f2. 

Estimation of Qi and Qs 

We have followed Wennerberg36 for estimation of Qi and 
Qs from Qc and Qd estimates. The quality factor of direct 
S-wave (Qd) estimated for an earth volume equivalent to 
volume sampled by coda wave can be considered as the 
total attenuation and can be related to Qi and Qs as47 
 

 
d i s

1 1 1 .
Q Q Q

= +  (6) 

 
In addition, Q–

c
1 values can be expressed as a function of 

Qi and Qs by the relationship36 
 

 
c i s

1 1 1 2 ( ) ,
Q Q Q

δ τ−= +  (7) 

 
where 1 – 2δ (τ) = –1.00/(4.44 + 0.738τ) and τ = ω t/Qs, with 
t(= tc + W/2) the average lapse time and ω the angular 
frequency. Using eqs (6) and (7) as a system of equations, 
Q–

s
1and Q–

i
1 can be expressed as 

 

 
s d c

1 1 1 1 ,
2 ( ) ( )Q Q Qδ τ τ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (8) 

 

 
i c d

1 1 1 2 ( ) 1 .
2 ( ) ( )Q Q Q

δ τ
δ τ τ

⎛ ⎞−= +⎜ ⎟
⎝ ⎠

 (9) 

 
For estimation of Qi and Qs from these equations, it is 
necessary to compute Qc and Qd. 
 Qi and Qs are estimated from the corresponding values 
of Qc and Qd using eqs (6)–(9). 

Results 

Qc values are estimated from the filtered coda waves of 
75 waveforms of 20 local events in frequency bands cen-
tered at 1, 1.5, 2, 3, 4, 6, 8, 12, 16 and 18 Hz for  
different coda window lengths of 20, 30 and 40 s. First, 
the result obtained on Qc estimation using 30 s window 
length has been discussed to portray the attenuation chara-
cteristics of the region and later the Qc estimates using 20 
and 40 s are discussed. 
 A total of 434 Qc measurements are obtained for 30 s 
window lengths, which fulfil the criteria of having corre-
lation coefficient 60%, estimated from linear regression 
of ln[A( f, t)/K(r, x)] versus t plot. The value of Qc meas-
urements varies from 10 to 85 at frequency 1 Hz and 
1010 to 3600 at 18 Hz (Figure 3 a). This variation may be 

due to different focal depths of the events (6–27 km) and 
epicentral distance and local site specific geological con-
ditions. The mean Qc values vary from 58 ± 14 at 1 Hz to 
2067 ± 350 at 18 Hz as shown in Figure 3 b, it is  
observed that Qc values follow a power law of the form 
Qc = Q0 f n, where Q0 is the quality factor Qc at 1 Hz and n 
the degree of frequency dependence25. For 30 s coda  
window, Q0 and n are 69.92 ± 1.11 and 1.23 ± 0.058  
respectively and follow attenuation relation Qc = 69.92 ± 
1.11 f 1.23 ± 0.058. This empirical attenuation relation pro-
vides average attenuation characteristics of the medium 
of a localized zone around the study area. According to 
Sato24 and Pulli27, the scatterers responsible for genera-
tion of coda waves can be assumed to be distributed over 
the surface area of an ellipsoid, which can be calculated 
using 
 

 
2 2

2 2 2 1,
( /2) [( /2) /4]

X Y
vt vt R

+ =
−

 (10) 

 
where X and Y are the major and minor axes of the ellip-
soid, and R the source–receiver distance for all the event–
station pairs used. Since the station–source distance of 
the present data set is less (< 100 km), R may be ignored 
and then eq. (10) will represent circular area of radius 
vt/2. The parameter ν represents the velocity of Lg wave 
(3.5 km/s), and t (= tc + W/2) the average lapse time. 
Here, tc is the average starting time of the coda window, 
and W the coda window length. The maximum depth of 
volume of medium from which coda wave generation 
would occur for different lapse times is given by  
 

 2 2
av[( / 2) ( / 2) ] ,h vt R h= − +  (11) 

 
where haν is the average hypocentral depth. For average 
coda window length of 30 s and considering the velocity 
of 3.5 km/s, it is observed that coda wave samples a sur-
face area of 2756.25 sq. km with a radius 52.5 km. 
 A comparison of Qc

–1 estimated at 30 s coda window as 
a function of frequency has been made in Figure 4 with 
Q–

c
1 observations for other tectonically active regions of 

the world, e.g. Hindukush26, Alaska48, Garhwal Hima-
laya49, Stone Canyon23, Koyna India8, northwest Hima-
laya50, Chamoli region31,43, etc. This figure shows that  
Q–

c
1 values of the study area follow a trend substantially 

similar to those of the other tectonically active regions 
mentioned here and also with the theoretically predicted 
curve given by Sato51. 
 The seismograms are analysed for Qc estimation at 20–
40 s lapse time window to study the effect of increasing 
coda window length on the estimation of Qc values. For 
all these coda window lengths, Qc values increase with 
increase in frequency. The value of Qc estimated at 20, 30 
and 40 s coda length has been averaged at each
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Figure 3. a, Plot of all Qc values as a function of frequency using 30 s coda window length. b, Plot of mean values of  
Qc as a function of frequency. A power law of the form Qc = Q0 f n has also been fitted using all mean values as shown. 

 
 

 
 

Figure 4. A comparison of Q–
c

1 as a function of frequency obtained 
for the study area with other tectonic regions in the world (modified 
after Gupta et al.8). 
 
 
frequency. The variation of average Qc values with lapse 
time in different frequencies is well reflected in Figure 5. 
The average Qc values increase almost linearly with  

increase in lapse time with a little exception in 8 Hz. This 
may be due to less number of Qc observations in that parti-
cular frequency. The average Qc values estimated from 
20, 30 and 40 s lapse time window length have been 
listed in Table 4. The mean value of Qc as a function of 
frequency shows an increasing trend with the increasing 

 
Figure 5. Variation of average Qc estimated at each frequency with 
lapse time. 
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lapse time window length (Figure 6). The mean value of 
Qc for 20 s window varies from 28 ± 12 (at 1 Hz) to 
1766 ± 209 (at 18 Hz) and for 40 s window Qc varies 
from 99 ± 26 (at 1 Hz) to 2416 ± 402 (at 18 Hz). The  
empirical attenuation relations obtained for 20 and  
40 s are Qc = 36.29 ± 1.18 f 1.45 ± 0.09 and Qc = 117.08 ± 
1.08 f 1.07 ± 0.05 respectively. 
 Qd is computed using the same data set used for  
estimation of Qc. The Qd values obtained at frequencies 
1.5, 2, 3, 4, 6, 8, 12, 16 and 18 Hz have been averaged at 
each frequency. It is observed that the Qd values increase 
with frequency following the frequency dependent aver-
age attenuation relationship Qd = 32.46 ± 1.24 f 1.50 ± 0.11. 
The average Qd varies with frequency as shown in Figure 
7. Relatively the values of Qd are observed to be less than 
Qc. At higher frequencies (> 6 Hz) Qd and Qc become 
closer (Table 5). 
 Using the Wennerberg’s36 approach, Qi and Qs are sepa-
rated from Qd and Qc estimates. The estimated Qs varies 
from 74 at 1.5 Hz to 79,040 at 18 Hz following the power 
law Qs = 37.53 ± 1.42 f 2.68 ± 0.18. Moreover the degree of 
frequency dependence (n = 2.68) suggests that attenua-
tion due to scattering decreases rapidly with increase in 
frequency. The estimated Qi varies from 82 at 1.5 Hz  
to 2049 at 18 Hz following the power law Qi = 
62.21 ± 1.16 f 1.25 ± 0.08. Comparing the value of degree of 
 
 
Table 4. Measures of average Qc values for different coda window  
 length and frequencies 

 Coda window length 
 

Frequency (Hz) 20 s 30 s 40 s 
 

1 28 ± 12 58 ± 14 99 ± 26 
1.5 54 ± 14 100 ± 15 165 ± 27 
2 85 ± 21 155 ± 27 240 ± 46 
3 252 ± 26 355 ± 39 470 ± 59 
4 382 ± 31 486 ± 65 636 ± 96 
6 636 ± 73 700 ± 82 864 ± 101 
8 900 ± 105 955 ± 113 1115 ± 127 
12 1273 ± 149 1419 ± 201 1545 ± 223 
16 1619 ± 168 1851 ± 321 2057 ± 338 
18 1766 ± 209 2067 ± 350 2416 ± 402 

 
 
 

Table 5. Values of Qc (for 30 s coda window length), Qd, Qs and Qi at 
 different frequencies 

Frequency (Hz) Qc Qd Qs Qi 
 

1.5  100   39    74   82 
2  155   81   206  133 
3  355  243   986  322 
4  486  315  1141  435 
6  700  628  8012  681 
8  955  899 20204  940 
12 1419 1309 22214 1391 
16 1851 1742 38978 1823 
18 2067 1998 79040 2049 

frequency dependence (n) for Qi and Qs with that for Qc 
and Qd, it is observed that, in higher frequencies the con-
tribution of intrinsic attenuation towards the total attenua-
tion is more compared to scattering attenuation in the  
region. This is clearly visible from the plot showing 
variation of Q–

c
1, Q–

d
1, Q–

i
1, Q–

s
1 with frequency (Figure 8). 

Discussion and conclusion 

An estimate of seismic wave attenuation is made in the 
Chedrang Valley and its vicinity including separation of 
intrinsic and scattering attenuation. As a result of this 
 
 

 
 

Figure 6. A comparison of mean values of Qc as a function of fre-
quency obtained at three lapse time windows. The power law fitted for 
each window is also shown. 

 

 
 

Figure 7. Plot of average Qd values versus frequency. 
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separation, it is possible to recover a better comprehen-
sion of the physical mechanism governing attenuation 
properties of the crust of this region. 
 The single scattering model of Aki22 modified by Aki 
and Chouet23 and Sato24 is applied to the data set consist-
ing of 20 events to study Coda-Q(Qc) and its frequency 
and lapse-time dependence. It is observed that average Qc 
values are almost linearly frequency and lapse-time  
dependent. The lapse-time dependence is generally inter-
preted26,52,53 as due to depth dependence of the seismic  
attenuation, which generally decreases with depth. The 
more the increase in lapse time, the larger the area of 
deeper crust that is sampled by the coda waves30,31,54. 
Therefore, increase in Qc values with the increase of coda 
window length indicates that the deeper crust is less  
heterogeneous (high Qc) than to the shallow crust (low Qc). 
 The Qc measurements in the study area exhibit a much 
stronger frequency dependence. Comparison of attenua-
tion (Q–

c
1) measurement as a function of frequency for the 

region with Q–
c
1 measurements observed for other tectonic 

regions of the world shows that Q–
c

1 values of the region 
follow a substantially similar trend of Q–

c
1 decay with fre-

quency as the other tectonic regions and also a theoreti-
cally predicted curve by Sato51. The world data is 
obtained from various research publications. Variation of 
Q0 and n in the attenuation relationship for different tec-
tonic regions have been the subject of many studies and 
many investigators brought out a positive correlation  
between low Q0 and the area of high tectonic acti-
vity26,29,55. Jin and Aki56 interpreted that the regions with 
high tectonic activity are characterized by low Q0 values. 
Several studies26,53,55 also observed a strong correlation 
between n and the level of tectonic activity. Generally the 
regions having high n value are tectonically more active 
compared to regions with low n. For example, a stable 
region such as central United States has low n (n = 0.2, 
ref. 57), whereas in our study area n > 1. This observation 
is in conformity with the present microseismic activities 
in the study area. 
 
 

 
 

Figure 8. Plot showing variation of Q–
c

1, Q–
d

1, Q–
s
1 and Q–

i
1 with fre-

quency. 

 The coda Q method proposed by Aki and Chouet23 is a 
promising means to study seismic wave attenuation in the 
crust. One of the problems in this method is the ambigu-
ity in interpreting Q–

c
1 in terms of total attenuation (Q–

d
1), 

scattering attenuation (Q–
s
1) and intrinsic attenuation  

(Q–
i
1). Few studies23,33,57 indicate that Qc is a combination 

of Qi and Qs; whereas studies by Aki25 and Tsujiura34  
indicate that scattering attenuation plays a more signifi-
cant role than intrinsic attenuation in case of coda decay. 
On the other hand, Shang and Gao58 proposed that in a 
highly scattered medium, coda decay is mainly caused by 
intrinsic attenuation. Some laboratory experiments59 and 
theoretical studies60,61 demonstrated that Q–

c
1 is not a 

measure of total attenuation but mainly reflects intrinsic 
attenuation. 
 In the present study, the relative contribution of Qs and 
Qi towards Qc and Qd is observed. It is seen that at lower 
frequencies, Qd values are less than the Qc values (Table 
5) and with increasing frequency, Qc becomes closer to 
Qd. This probably indicates that at higher frequency 
Aki’s25 assumption (that coda waves are essentially back-
scattered S-wave) holds true for the study area. At lower 
frequency (1.5 Hz) Q–

s
1 is comparable to Q–

i
1, whereas 

with increasing frequency Q–
i
1 becomes higher compared 

to Q–
s
1. Although all the Q parameters are frequency  

dependent with coefficients n > 1, the highest value of n 
corresponds to Qs. Several authors13,62–64 have suggested  
 
 

 
 

Figure 9. a, Comparison of Q–
i
1 and b, Q–

s
1 obtained for our study area 

with the observations observed for different regions: Southern Califor-
nia68; Mt Etna and Granada Basin14; Western Greece69; Almeria  
Basin70; Erzincan Region71; Southern Sicily67; North-Western Hima-
layas20. 
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that this strong frequency dependence could be related to 
the size of heterogeneities. Frequency dependence of Q–

s
1  

occurs when the heterogeneity responsible for the scatter-
ing is comparable with wavelengths of the analysed lower 
frequency. This means that seismic scattering is  
related to fracture and lithological heterogeneity in the 
crust65. At higher frequency, predominance of intrinsic 
attenuation can be explained by thermal dissipation of 
heat in spatial domains at the microphysical scale as sug-
gested by Leary65. The study area, i.e. Chedrang Fault 
and its vicinity is characterized by NNW–SSE compres-
sion with predominant thrust faulting66 which may lead to  
development of microfracture and small cracks. This type 
of microfractures also induces thermal gradients of suffi-
cient magnitudes to allow for the thermal absorption 
needed for the seismic wave absorption observation. 
 A comparison is made of Q–

i
1 and Q–

s
1 values for the 

study area with that of various parts of the world20,67. An 
useful comparison in Figure 9, where the pattern of in-
trinsic and scattering attenuation estimated throughout 
the world and the present study is reported. The pattern of 
Q–

i
1 and Q–

s
1 with frequency is analogous to the estimates 

obtained in other tectonic areas in the world, except with 
the observation that of Q–

i
1 obtained in Spain. Comparing 

the value of degree of frequency dependence (n) for Qi 
and Qs, it is observed that, in higher frequencies the con-
tribution of intrinsic attenuation towards the total attenua-
tion is more compared to scattering attenuation in the 
Chedrang Valley and its vicinity. 
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